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Generally scientists apply logic, experience,
and quantitative analysis to explain a pattern
in terms of the processes believed to underlie
it. But to what extent do these patterns
mirror the processes that created them?



For long time, physicists were convinced that the 
best science was reductionist and that all other 
sciences, at least in principle, could eventually be 
predicated on, if not reduced to, physical laws. 

Even though, in practice, it would be impossible to 
accomplish such a vast reduction, there was 
comfort and pride in believing that our science was 
fundamental. 

Recent development of emergent phenomena has 
made many of us no longer blindly buy into the 
idea that reductionism is superior to other science. 



Shifting Paradigms of Systems Shifting Paradigms of Systems 
Thinking in Complex EcologyThinking in Complex Ecology

Reductionism —› Holism 
Realism —› Constructivism 
Single perspective —› Multiple perspectives 
Disciplinary boundaries —› Isomorphisms among 
disciplines 
Disciplinary problems —› Cross-disciplinary 
problems 
Simple systems —› Complex systems/Simplification 



Cont.Cont.

Closed systems —› Open systems 
Observer and systems —› Observer in system
Invariance —› Variability/higher level invariance 
Reversibility —› Irreversibility 
Regularities —› Singularities 
Linearities —› Nonlinearities 
Predictability —› Randomness and chaos 
Additivity —› Nonadditivity
Causality —› Constraints and possibilities 
Certainty —› Uncertainty 



Mathematical, statistical and computational Mathematical, statistical and computational 
challenges from complex ecology challenges from complex ecology 

How do we incorporate variation among 
individual units in nonlinear systems? 
How do we treat the interactions among 
phenomena that occur on a wide range of scales, 
of space, time, and organizational complexity?
What is the relation between pattern (or structure) 
and process (or function)?
How do we quantify emergent property of 
ecological (landscape) system? 



Ecological ComplexityEcological Complexity
refers to the complex interplay between all living systems and 
their environment, and emergent properties from such an 
intricate interplay.
The concept of ecological complexity stresses the richness of 
ecological systems and their capacity for adaptation and self-
organization.
The science of ecological complexity seeks a truly quantitative 
and integrative approach towards a better understanding of the 
complex, nonlinear interactions (behavioral, biological, 
chemical, ecological, environmental, physical, social, cultural)
that affect, sustain, or are influenced by all living systems, 
including humans. 
It deals with questions at the interfaces of traditional disciplines 
and its goal is to enable us to explain and ultimately predict the 
outcome of such interactions. 
The field is based on a complexity theoretical framework for 
solving real world environmental problems 



What are complex systems?What are complex systems?

Complex systems are characterized by 
strong (usually nonlinear) interactions 
between the parts, complex feedback loops 
that make it difficult to distinguish cause 
from effect, significant time and space 
lags, discontinuities, thresholds, and 
limits.



Complex systems selfComplex systems self--organize themselves into organize themselves into 
states of greater complexity. states of greater complexity. 
That behavior is not predictable from knowledge That behavior is not predictable from knowledge 
of the individual elements, no matter how much of the individual elements, no matter how much 
we know about them. we know about them. 
But it can be discovered by studying how these But it can be discovered by studying how these 
elements interact and how the system adapts and elements interact and how the system adapts and 
changes throughout time.changes throughout time.
This new, emergent behavior of the system is This new, emergent behavior of the system is 
important for understanding how nature operates important for understanding how nature operates 
on the macroscopic level.on the macroscopic level.



The Types of ComplexityThe Types of Complexity

Structural complexity
Functional complexity

or
Static complexity
Dynamic complexity
Self-organizing and evolving 
complexity



Main Research Focuses of Current Main Research Focuses of Current 
Ecological complexity Studies Ecological complexity Studies 

Nonlinearity: bifurcation, chaos … 
Self-organized hierarchy and emergent 
properties
Threshold, criticality and phase transition
Scaling issue: scale invariance, scale 
covariance and scale or across-scale dynamics 



Complex Systems Theory states that critically interacting 
components self-organize to form potentially evolving 
structures exhibiting a hierarchy of emergent system 
properties.
Nonlinear Dynamics Theory: Bifurcations, cellular 
automata, chaos, fractals, percolation theory, wavelets …
Nonlinear Nonequilibrium Thermodynamics (I. 
Prigogine)
Complex Adaptive Systems Theory: Adaptability theory 
(Conrad), self-organized criticality (Bak et al.), highly 
optimized tolerance (Carlson and Doyle), synergetics (H. 
Haken) …
Information Theory
Fuzzy Systems Theory (Zadeh)



Modeling invasion of recessive BtModeling invasion of recessive Bt--resistant insects: resistant insects: 
An impact on transgenic plantsAn impact on transgenic plants

(Medvinsky et al. 2004. J. Theor. Biology, 231: 121-127)



Dynamic Regimes of Biological Invasion



Dynamic Regimes of Biological Invasion (cont.)

(Petrovsky, Morozov,
& Li, Bull. Math. Biol.,
in press)



(Morozov, Petrovskii & Li, 2004. Proc. R. Soc. Lond. B, 271: 1407-1414)
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SelfSelf--OrganizationOrganization
The essence of self-organization is that system structure 
often appears without explicit pressure or involvement 
from outside the system. In other words, the constraints on 
form (i.e. organization) of interest to us are internal to the 
system, resulting from the interactions among the 
components and usually independent of the physical nature 
of those components.

The organization can evolve in either time or space, 
maintain a stable form or show transient phenomena. 

General resource flows within self-organized systems are 
expected (dissipation), although not critical to the concept 
itself. 



Typical features include Typical features include 

Absence of centralized control (competition) 
Dynamic operation (time evolution) 
Fluctuations (searches through options) 
Symmetry breaking (loss of freedom) 
Instability (self-reinforcing choices) 
Multiple equilibria (possible attractors) 
Criticality (threshold effect phase changes) 
Global order (emergence from local interactions) 
Dissipation (energy usage and export) 
Redundancy (insensitive to damage) 
Self-maintenance (repair & part replacement) 
Adaptation (stability to external variation) 
Complexity (multiple parameters) 
Hierarchies (multiple self-organized levels) 



Criteria of Order in Open SystemsCriteria of Order in Open Systems
Boltzmann’s H-theorem
Prigogine’s dissipative structures
The Glansdorff-Prigogine criterion
Klimontovich’s S-theorem
K-entropy
Spectral entropy



German Long-Term Ecological Monitoring Site



Self-organization, entropy, order and complexity

The normalized spectral entropy measure
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Biotic Abiotic



Chaos theory’s contributions include the Chaos theory’s contributions include the 
following discoveries:following discoveries:

Change isn’t necessarily linear; that is, small 
causes can have larger effects. Determinism and 
predictability are not synonymous –
deterministic equations can lead to 
unpredictable results – chaos- when there is 
feedback within a system.
In systems that are “far-from-equilibrium” (i.e., 
chaotic), change does not have to be related to 
external causes. Such systems can self-organize 
at a higher level of organization.



More specifically, chaos may provide the foundation of ecologicaMore specifically, chaos may provide the foundation of ecological l 
complexity with a few rather simple lessons, as follows:complexity with a few rather simple lessons, as follows:

Order is hidden in chaos 
The order in chaos is holistic order and results from mutual 
effects 
The order in chaos provides a mechanical explanation for 
“mysterious” hidden global ordering (an “invisible hand”) 
Nonlinear interdependent dynamics have a penchant for 
creating whole out of parts 
Nonlinear systems may exhibit qualitative transformations 
of behavior (bifurcations) 
Chaotic dynamical systems may be permanently in a 
‘critical’ state 



SpatioSpatio--temporal chaostemporal chaos

Complex phenomena in space and time are 
common in nature, although no standard theory 
has been developed. Spatially extended systems 
possess an infinite number of degrees of 
freedom. 
Large classes of spatially extended systems may 
undergo a sequence of transitions leading to 
regimes displaying aperiodic dependence in 
both space and time, which we referred to rather 
loosely as spatio-temporal chaos. 



(SIAM Review, 44(3): 311-370, 2002)



Coexistence of multiple attractorsCoexistence of multiple attractors



rs-space



Heterogeneity is a fundamental 
characteristic of nature, which is present in 
most variables representing natural 
phenomena. Heterogeneity appears at any 
scale of ecological systems.
Ecological systems are organized 
hierarchically over a broad range of 
interrelated space-time scales.



In general, we need to consider the following In general, we need to consider the following 
scales: scales: 

Temporal scale: (a) the lifetime/duration; (b) the 
period/cycle; and (c) the correlation length/integral 
scale; 
Spatial scale: (a) spatial extent; (b) space period; 
and (c) the correlation length/integral scale; 
"Organism" scale: (a) body size/mass; (b) species-
specific growth rate; (c) species extinction rate; (d) 
the life span; (e) the home range; (f) niche, and so 
on.



In practice, we have to identify: In practice, we have to identify: 

Process scale
Observation scale
Modeling/working scale
Management scale
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Scale invariance or symmetry
= Self-similarity = Criticality

= Scale independence

Ecological scale invariance 
Ecological equivalence of all lengths

X (t)≡
d

X (at )≡
d

a H X (t)



From scale invariance to scale 
covariance 

• The scale dependence (covariance) is a 
spontaneously broken scale symmetry.

• That means that we have to take non-linearity 
in scale into account.



(Hierarchy theory: characteristic scales or rates.)



y1(x) = −1.58 − 1.01 x, r2 = 0.77, P < 10^−5
y2(x) = y1(1.43) + µ2 (x − 1.43), µ2 = 0.04 ± 0.02

(Modified after Makarieva, Gorshkov & Li, 2003. J. Theor. Biol., 221: 301-307)



In general, boundary conditions, In general, boundary conditions, 
finite size effects, forcing or finite size effects, forcing or 
dissipation spoil this scale dissipation spoil this scale 
invariance, and the solution is invariance, and the solution is 
not powernot power--law anymore. The law anymore. The 
concept of scale covariance is concept of scale covariance is 
then very useful to study the then very useful to study the 
breaking of scale symmetry.breaking of scale symmetry.



Scale (or acrossScale (or across--scale) dynamicsscale) dynamics

To identify and study the scale-force 
responsible for the scale distortion (i.e., for the 
deviation to standard scaling, mono- or multi-
fractals).
The methodology includes, such as, scale 
relativity, scale-acceleration, the Lagrange 
scale-equation, discrete scale invariance, etc. 



COMPLEX SYSTEMS APPROACHES TO STUDY
HUMAN - ENVIRONMENT INTERACTIONS
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How to understand the complex interactions,
and how to use that understanding?
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(Wang, Wang & Li, 2001. Int. J. Sustainable Development and World
Ecology, 8: 119-126)



The highest SDI value is for North America (0.6274), and 
the lowest is for Africa (0.3007) (less than half of the North 
America). In descending order, mean regional SDI ranks 
were: North America, West Europe, East Europe, South 
America, Middle America, Pacific and Oceanic countries, 
East Asia, West Asia, South Asia and Africa. 
The mean SDI value for the world is 0.45 (1988-1994). The 
strongest country has a SDI value 5 times greater than the 
weakest country. 
SDI values in 29% of the world’s countries are strong. The 
three strongest are Canada, Sweden and Norway with SDI 
values of 0.740, 0.711 and 0.708, respectively. All of these 
countries are industrialized and have rich resource potential. 



SDI values in 42% of the world’s countries have middle 
values. In these countries 52% are above average and 48% 
are below average. 
SDI values in 29% of the world’s countries are weak. Of 
these, 82% are located in Africa. The three weakest 
countries are Afghanistan, Somalia and Mali, with SDI 
values of 0.117, 0.128 and 0.152, respectively. These are all 
less developed countries with poor resource potential and 
turbulent social and environmental states. 
Over the past eight years, SDI values in 58.6% of the 
world’s countries show a positive trend; 16.1% are 
relatively stable, and 25.3% show a negative trend. SDI 
values for all former USSR countries are declining. 



In countries whose SDI values are below 
average, 75% are increasing, 12% are stable and 
only 13% are decreasing. Generally speaking, 
these results suggest most of the less sustainable 
developing countries are improving their 
situation. Only 13% of these countries show a 
decreasing trend. 



Conclusions
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