Understanding the emergence of organisational properties in ecological systems

Individual-based models as tools for ecological theory and application

Broder Breckling
Hauke Reuter and Ulrike Middelhoff

Let us start slowly

Let us start slowly

To a guided tour through the application range of Individual-based models

Let us start slowly

Cepaea hortensis

ECEM'04, Breckling et al.

ECEM'04, Breckling et al.

Snail Trail

Starting point for movement modelling

Starting point for movement modelling

Frequency of turning angles

ECEM 04, Brecking et al.

30

20

10

Starting point for movement modelling

Frequency of turning angles

Random selection of turning angles

Snail Trail

The model in Pseudo-Code

Start Coordinate Loop:

Select a random angle
Calculate new Coordinate
Draw step into that direction
Check if end of iteration
End loop
Stop

Snail Trail

The model in Pseudo-Code

Start Coordinate

Loop:

Select a random angle

Calculate new Coordinate

Draw step into that direction

Check if end of iteration

End loop

Rules to chose length and angle are a general task for movement modelling

ECEM'04, Breckling et al

Theoretical aspects

Simple activities of single individuals can be modelled with conventional programming approaches using loop structures.

(Inter-)action of different individuals requires a quasi-parallel approach using object orientation.

Carabus coriaceus

Telemetrically recorded positions of different individuals

Angles: Random

Step-length: Hyperbolic (Length and frequency are inversly related:

large steps are rare, short steps are frequent)

Estimating dispersal implications

Standard hyperbolic model

Average step length every day

Omission of the largest 5% of steps

Carabid Beetles Estimating dispersal implications

Conclusion: Rare events (large steps) are important to explain dispersal distances

Dispersal of Carabids

Dispersal of Carabids

Dispersal in hedgerows

Dispersal of Carabids

Dispersal on stepping stones

Periodic Event Scheduling Exogene organisation (top d

More complex pattern: Interactive movement: Schooling

Herring Interactive movement: Schooling

Clupea harengus

Rules for schooling behaviour

- No leaders
- Attraction within visible range
- •Parallel orientation within preferred swimming distance
- •Repellence when too close

Adequate parametrisation leads to realistic school simulations.

We imagine a clumped dispersal of food particles where individuals either slow down or occasionally swith to random directions

We imagine a clumped dispersal of food particles where individuals either slow down or occasionally swith to random directions

We imagine a clumped dispersal of food particles where individuals either slow down or occasionally swith to random directions

Quantitative evaluation of schooling search compared to solitary search

Emergent property:

In a food gradient the school orients towards increased food densities

ECEM'04, Breckling et al

The school as a higher level entity acquires a propery that each single individual does not have.

Roach A more detailed fish model

Rutilus rutilus

Roach

A more detailed fish model

ROACH -

Scientific name: Rutilus rutilus

Common size: 15-22 cm, weight: 100-250 gr

Fishing season: Any time of the year

Bait: Corn, flour, boiled potato etc

Hook size: No. 14-12 Line: 0.12-0.15 mm

Prefers shallow water with rocky or sandy bed.

One of the most frequent fish in smaller freshwater lakes in Germany

Roach

Empirical model basis:

- •Laboratory studies on energy assimilation
- •Distribution studies in the lake
- •Growth curves
- •food density
- •temperature and other limnic parameter

One of the most frequent fish in smaller freshwater lakes in Germany

Roach In Lake Belau (Schleswig Holstein)

Traces of 30 individuals

Simulated cohort development over 3 years

Roach

If-Then relationships in imaginary lakes

Roach

If-Then relationships in imaginary lakes

(constant proportion of 30 % littoral)

Theoretical aspects

Rodents

Complex population dynamics

Microtus agrestis

Clethrionomys glareolus (Bank vole)

Microtus agrestis http://www.biologie.uniosnabrueck.de/Ethologie/bilder/small_mam/arvico lidae/microtus_agrestis1.jpg Clethrionomys glareolus (Bank vole) http://212.187.155.84/pass_06june/Subdirectories_for_Search/Species Kingdoms/0Families_ACrM_Rodentia/Muridae/Clethrionomys/Clethrionomys_glareolus/Images/Clethrionomys_glareolus_DT.jpg

Rodents Complex population dynamics

Cyclic Population outbreaks depending on

Environmental structure
Food availibility
Physiological properties
Predators

• • •

Top down or bottom up control of cycles?

Rodents Measured population densities

Oscillations of rodent abundances in Scandinavia

Rodents Food web

Main Components of the rodent community model

Rodents Internal object structure rodent reproduction movement uveniles rodents energetics mortality nutrient uptake environment rodent food ➤ b a retrieves information from b a → b energy flow from a to b

Main Components and interactions of the rodents

Rodents Simulated Population dynamics

Rodents Trophic Control

Class 'Organism' Procedure FEEDING Procedure MOVING Procedure RESTING Procedure GROWING While alive do IF ... (hungry) then FEEDING Wait (feeding_time) IF ... (daylight) then MOVING Wait (moving_time) IF ... (tired) then RESTING Wait (resting_time) IF ... (satisfied) then GROWING Wait (growing_time) End of while death

Cyclic Activity

ECEM'04, Breckling et al.

ECEM'04, Breckling et al.

Alder Combined Functional - Architectural Plant modelling

Alnus glutinosa

Alder Roots

Alder Roots

Development of tree compartments

Alder

Combined Functional - Architectural Plant modelling

Alnus glutinosa

Model Example: Object Oriented Plant Simulation

- Each of the object carries its coordinates and can access its (local) environment
- Each object performs its specific actions according to the local conditions
- Each object is updated independently
- The structure of the plant emerges as a result of the local interactions

Alder Shoot

- Parametrisation was done according to short-term measurements
- Plant competition and stand interaction can be modelled

Alder Shoot

Alder Shoot

Effects of parameter changes on growth can be tested: Assimilate and nutrient transportation efficiency and its long term effect for the plant architecture

Periodic Event Scheduling Exogene organisation (top d

Theoretical aspects

Regional Context

Rodents

Carabid beetles

Roach

Alder

Research Site Lake Belau Ecology Centre Kiel Schleswig Holstein, Northern Germany

CEM'04, Breckling et al

Project GenEERA Generic Detection and extrapolation of oilseed rape dispersal

Analysis of dispersal potential of genetically modified oilseed rape on different scales...

Background:
Transgenic oilseed rape is under admission for commercial release

For biosafety research different scales have to be investigated

Brassica

napus

Micro-Scale:

Physiological properties, Hybridisation with related species

Farm-Scale: Cultivation measures, pollen transfer, seed dispersal

Landscape Scale:
Dispersal frequencies depending on habitat type

Project GenEERA

Regional Scale: Cultivation pattern, regional pollen transfer, coexistence implications, regionalisation

Biosafety research Some results

Oilseed rape hybridises with more than 10 related species as rare events.

Seeds can survive up to ten years or more in the soil seed bank.

Old varieties, more than 10 years out of cultivation have been detected in the wild

GenEERA
Input data

0,1 - 0,5

0,5 - 1,0

1,0 - 5,0

5,0 - 20,0

> 20,0

- 1km² grid map
- Climate impact
- Phenology
- Cultivation practice
- Pollination
- Seedbank
- Genetic Markers

Simulation of cultivation...

Scenarios for typical situations for larger areas

Variant 1:

- stubble breaking immediately
- ploughing after 1 week
- rigid tine after 7 weeks

Scenario with medium level of seed loss during GMO-harvest: **18** %

Scenario with very low level of seed loss during GMO harvest: 1

Simulation of soil seed bank after one year cultivation of genetically modified oilseed rape

Scenario with very low level of Scenario with medium level of seed loss during GMO-harvest: 18 %seed loss during GMO harvest: 1 %

Variant 2:

- stubble breaking after 1 week
- ploughing after 4 weeks
- weeks

- rigid tine after 7 Simulation of soil seed bank after

one year cultivation of genetically modified oilseed rape

individual.

Simulated development of feral plants

Observed dispersal pattern:
Feral oilseed rape in Bremen and surroundig

Observed dispersal pattern in the landscape: Feral oilseed rape. Around one location each km²

Project GenEERA Some results The regional centre of diversity: the Bremen harbour area

GenEERA Input data

GenEERA Input data

Climate clusters

GenEERA Input data

ECEM'04, Breckling et al

Project GenEERA Some results

Cultivaton patterm detected by remote sensing

Oilseed Cultivaton density for Northern Germany (grid: 5 x 5 km)

Model extrapolation:

Frequency of transgenic seeds in farmland soil seed bank after 5 years of 10 % transgenic oilseed market share..

...and after another 5 years with 50 % market share

Individual-based modelling contributes to understand large scale ecological dynamics

in this example combined with

- Geography,
- •Remote sensing,
- Climatology,
- •Agronomy, and
- Geostatistics

Some main points about Individual-based models:

The approach is simple.

Everybody can start with it

However, it can become as complex as our understanding of life is

ECEM 04, Breckling et al

The same basic structure can be applied throughout ecology

Major progress is made combining individual-based models and other techniques.

Epistemological implications:

In advanced applications differential equations are frequently used as sub-units.

In addition, the approach allows to simulate structural changes of the system

This shifts the focus of systems analysis from Thank you for quantitative to an integration of your attention and ... qualitative aspects

ECEM 04, Breckling et al

Thanks to

Individual-based Modelling Group
Hauke Reuter, Ulrike Middelhoff, Franz Hölker,
Fred Jopp, Christiane Eschenbach

Project GenEERA

Hauke Reuter, Ulrike Middelhoff, Ruth Brauner, Beatrix Tappeser, Peter Borgmann, Hendrik Laue, Barbara Neuffer, Herbert Hurka, Wilhelm Windhorst, Ernst-Walter Reiche, Winfried Schröder, Gunther Schmidt, Andreas Born, Gertrund Menzel, Michael Glemnitz, Angelika Wurbs, Bettina Funke

Acknowledgement

Funding of the Federal Ministry for Research and Technology and of the Senate of the Free Hanseatic City of Bremen is gratefully acknowledged