Simulation modelling of forest ecosystem development under the different forest management scenarios

<u>Alexey Mikhailov</u>¹, Alexander Komarov¹ and Oleg Chertov² Gennady Andrienko³, Natalia Andrienko³,

1. Institute of Physicochemical and Biological Problems in Soil Science of Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia, just_send_me_mail@rambler.ru, tel.:+7(0967)73-07-55

2. Biological Institute of St. Petersburg State University, 198504, St. Petersburg-Peterhoff 2 Oranienbaum Rd., Russia, <u>oleg_chertov@hotmail.com</u>

3. Fraunhofer Institute of Autonomous Intelligent Systems, Germany

Objectives

- Implementation of the EFIMOD model for local level of forest enterprise at case study in Central European Russia
- Comparison of 4 different silvicultural regimes at longterm simulation
- Analysis of Carbon budget of forest territory
- Analysis of Biodiversity of forest territory
- Analysis of wood production of forest territory

Short description of the EFIMOD model

- EFIMOD is spatially explicit individual based model of forest ecosystem
- The system consists of 3 main parts: tree sub model, soil sub model (ROMUL) and statistical climate generator (SCLISS)
- Tree sub model is an individual growth simulator in dependence on light and soil nitrogen
- ROMUL is the model of forest soil organic matter dynamics
- SCLISS allows for estimation of soil temperature and moisture using measured standard long-term meteorological data

	Input	Output
Climate data	Air & soil temperature, Precipitation (Recalculated into forest floor & soil moisture)	Soil temperature and moisture with monthly step
Soil data	Pools of Soil Organic Matter and Nitrogen in forest floor and mineral soil	Pools of Soil Organic Matter and Nitrogen in organic and mineral soil horizons
Tree Species data	Potential growth, specific nitrogen consumption, allocation of biomass between tree organs	
Forest data	Tree species composition, number of trees, height, diameter with standard deviation	Tree species composition, number of trees, height, diameter, Growing stock, BA, biomass
Silvicultural data	Cutting regimes, type of cutting, rotation length	Harvested wood, removal of carbon and nitrogen from the ecosystem

EFIMOD 2: Soil sub model ROMUL

Kⁱ2S

 \vec{F}_{μ} - complex of humus

substances with

undecomposed debris in

mineral topsoil ("labil humus")

litter fall

 L^{j}_{u0} -

Belowground

litter fall

in.

Kⁱ1S

 L^{j}_{μ} -

undecomposed

litter in mineral

topsoil

K'35

Soil surface

undecomposed debris (humified organic layer)

Kⁱ_{4L}

H - humus bonded with clay minerals

Ki4S

K'5S

Kinc

K

Case study

The State Forest "Russky Les" is situated 100 km South of Moscow (Russia) on Central East European Plain with continental climate of the border between coniferous and broad-leaved forest zones It was selected 104 stands (Total area is 273.4 ha)

Model Verification

Silvicultural regimes selected for 200-year simulation

Silvicultural regimes selected for 200-year simulation

- Natural development (Nat). This scenario is a full protection of the forest in all forest compartments without cutting
- Russian legal practice (LRU). The scenario describes managed forest with 4 thinnings (at 5, 10, 25 and 50 years), the final clear cutting (90 year age for coniferous and oak, 60 year age for birch and lime), with successful natural regeneration
- Selective cutting system (SCU). Managed forest with 2 thinnings and then selective cuttings each 30 years (30% of basal area from above)
- Illegal practice (ILL). It is a heavy upper thinning and removing of the best trees, clear cutting without conservation of natural regeneration

Carbon dynamics

Carbon in trees

Carbon in Soil

Carbon dynamics in stands

495.2

Difference of tree carbon between last and first time step of simulation

Mean value of Carbon in Trees

10.0

NAT – natural development SCU – selective cutting LRU – legal practice ILL – illegal practice

Dynamics of soil carbon

Difference of soil carbon between last and first time step of simulation NAT t/ha **LRU** NAT S℃⊎ **SCU** ILL -57.7 206.0 0.0

Mean carbon value in soil

NAT – natural development SCU – selective cutting LRU – legal practice ILL – illegal practice

Map exported from CommonGIS/Descartes XXI

Frequency distribution dynamic of stands with different Carbon stocks

Brown: from 0 to 100 t/ha; White from 101 to 200 t/ha; Green from 201

Long-term simulation of natural development

Carbon balance

Carbon balance Carbon sourses and sinks 7.00 6.00 Carbon t/ha per year 5.00 0.90 4.00 0.70 Carbon t/ha per year 3.00 0.50 2.00 0.30 1.00 0.10 0.00 -0.10 NAT SCU LRU ILL \square NP P -0.30 NAT ILL SCU LRU **CO2** Cuttings Burned of felling debris

ECEN/EANL 2004

Conclusions

- Simulated forestry regimes show the different ecological and silvicultural effects
- Carbon sequestration: a clear advantage of selective cutting and natural development over clear-cut systems both in relation to stand biomass and SOM
- Siodiversity: selective cutting and natural development have higher proportion of mixed stands and deadwood. Russian legal forestry has also complicated spatial mosaics of stands of different age and composition
- Illegal practice leads to absolute domination of deciduous stands of low commercial value
- The silvicultural effectiveness of selective and Russian legal regimes is approximately the same. Illegal regime demonstrates lager volume of harvested wood due to heavy thinning

Acknowledgements

This work was supported by

- R&D Russian Federal Program "Global climate changes and its possible consequences", contract № 43-016.11.1625
- Russian Academy of Science Program "Environmental and climatic changes: natural disasters"
- EU-INTAS grants 2001-0633 and 2001-0512

Thank you for your attention!