A New Synergetic Paradigm in Environmental Numerical Modeling: Hybrid Models Combining Deterministic and Machine Learning Components

Vladimir Krasnopolsky, University of Maryland & NOAA/NCEP, and Michael Fox-Rabinovitz

University of Maryland

Acknowledgments: W. Collins, P. Rasch, J. Tribbia (all NCAR), D. Chalikov (UMD)

ECEM/EAML 2004

OUTLINE

INTRODUCTION. Motivation for the study: Complex Climate Model and its computational "Bottlenecks"

> APPROACH:

- new hybrid model combining <u>deterministic</u> modeling & <u>statistical</u> MLT (Machine Learning Techniques)
- *"NeuroPhysics"* NN Emulations for Model Physics Components

NCAR CAM-2 Long-Wave Radiation (LWR):

- Accuracy and Performance of NN Emulations
- Comparison of CAM Climate Simulations: two
 10 Year Parallel Runs with the Original LWR and its NN Emulation

CONCLUSIONS & DISCUSSION

Interdisciplinary Climate Model System

Climate Model - One of the Most Complex Existing Numerical Models

ECEM/EAML 2004

Interdisciplinary Complex Climate & Weather Systems

ECEM/EAML 2004

Climate Model (1)

The set of conservation laws (mass, energy, momentum, water vapor, ozone, etc.)

> Deterministic First Principles Models, 3-D Partial Differential Equations on the Sphere:

$$\frac{\partial \psi}{\partial t} + D(\psi, x) = P(\psi, x)$$

- ψ a 3-D prognostic/dependent variable, e.g., temperature
- x a 3-D independent variable: x, y, z & t
- D dynamics (spectral or gridpoint)
- P physics or parameterization of physical processes (1-D vertical r.h.s. forcing)
- > Continuity Equation
- > Thermodynamic Equation
- > Momentum Equations

Climate Model (2)

Physics – P, currently represented by 1-D (vertical) parameterizations

- > Major components of $P = \{R, W, C, T, S, CH\}$:
 - R radiation (long & short wave processes)
 - ▶ W convection, and large scale precipitation processes
 - C clouds
 - ► T turbulence
 - ▶ S surface model (land, ocean, ice air interaction)
 - CH chemistry

Each component of P is a 1-D parameterization of complicated set of multi-scale theoretical and empirical physical process models <u>simplified for computational</u> <u>reasons</u>

> P is the most time consuming part of climate models!

Structure of General Circulation Model Interaction of Major Components

ECEM/EAML 2004

Distribution of Total Climate Model Calculation Time

Current NCAR Climate Model (T42 x L26): ~ 3° x 3.5°

5% 6%

Near-Term Upcoming Climate Models (estimated) : ~ 1° x 1°

89%

ECEM/EAML 2004

Approach

MLT/NN Emulations for Model Physics

ECEM/EAML 2004

Generic Solution – "NeuroPhysics"

Accurate and Fast NN Emulation for Parameterizations of Physics

ECEM/EAML 2004

Major Advantages of NNs Relevant for Emulating Numerical Model Components:

- NNs are very generic, accurate and convenient mathematical (statistical) models which are able to emulate numerical model components, which are complicated nonlinear input/output relationships (continuous or almost continuous mappings).
- > NNs are **robust** with respect to random noise and fault- tolerant.
- NNs are analytically differentiable (training, error and sensitivity analyses): almost free Jacobian!
- NNs emulations are accurate and fast but NO FREE LUNCH!
- Training is complicated and time consuming nonlinear optimization task; <u>however training should be done only once for a model version!</u>
- Possibility of online adjustment
- NNs are well-suited for parallel and vector processing

Our applications >> usual applications in terms of complexity & dimensionality! We reevaluated and adjusted all basic NN components & procedures correspondingly!

ECEM/EAML 2004

Change of Paradigm in Climate Modeling

From Deterministic to Hybrid Models

NEW METHODOLOGY HAS BEEN SUCSESSFULY APPLIED TO

>Atmospheric Applications:

- **>NCAR Radiation Parameterization**
- ECMWF Long Wave Radiation Parameterization; operational in ECMWF since 2003
- Satellite Data Processing Component (SSM/I), operational NOAA/NCEP Global Data Assimilation System since 1998

>Oceanic Applications:

>Ocean Model at NCEP: Equation of State (density and salinity of sea water)

>Ocean Wind Wave Model at NCEP: Nonlinear Wave-Wave Interaction (superparameterization)

NNs for NCAR CAM-2 Long Wave Radiation Parameterization

ECEM/EAML 2004

NN for NCAR CAM-2 Physics

CAM-2 Long Wave Radiation

Long Wave Radiative Transfer:

$$F^{\downarrow}(p) = B(p_t) \cdot \varepsilon(p_t, p) + \int_{p_t} \alpha(p_t, p) \cdot dB(p')$$

$$F^{\uparrow}(p) = B(p_s) - \int_p^{p_s} \alpha(p, p') \cdot dB(p')$$

 $B(p) = \sigma \cdot T^{4}(p)$ - the Stefan – Boltzman relation

• Absorptivity & Emissivity (optical properties): $\alpha(p, p') = \frac{\int_{0}^{\infty} \{ dB_{v}(p') / dT(p') \} \cdot (1 - \tau_{v}(p, p')) \cdot dv}{dB(p) / dT(p)}$

$$(p_{t}, p) = \frac{\int_{0}^{0} B_{v}(p_{t}) \cdot (1 - \tau_{v}(p_{t}, p)) \cdot dv}{B(p_{t})}$$

$$B_{v}(p)$$
 – the Plank function

ECEM/EAML 2004

E

Neural Network for NCAR LW Radiation

NN characteristics

> 220 Inputs:

- Profiles: temperature; humidity; ozone, methane, cfc11, cfc12, & N₂O mixing ratios, pressure, cloudiness, emissivity
- Relevant surface characteristics: surface pressure, upward LW flux on a surface flwupcgs

> 33 Outputs:

- Profile of heating rates (26)
- **7 LW radiation fluxes:** *flns, flnt, flut, flnsc, flntc, flutc, flwds*
- Hidden Layer: One layer with 90 to 300 neurons
- Training: nonlinear optimization in the space with dimensionality of 30,000 to 100,000
 - Training Data Set: Subset of about 100,000 instantaneous profiles simulated by CAM-2 for the 1-st year
 - Training time: about 7 to 20 days (SGI workstation)
 - Training iterations: 2,000 to 10,000

> Validation on Independent Data:

Validation Data Set (independent data): about 100,000 instantaneous profiles simulated by CAM-2 for the 2-nd year

NN Approximation Accuracy and Performance vs. Original Parameterization

Parameter	Model	Bias	RMSE	Mean	σ	Performance
HR (°K/day)	NASA	1. 10 -4	0.32	1.52	1.46	
	NCAR	3. 10 -5	0.28	-1.40	1.98	~ 80 times faster
OLR (W/m²)	NASA	0.009	1.06	253.4	46.3	
	NCAR	0.01	1.2	240.5	46.9	

ECEM/EAML 2004 New Synergetic Paradigm: Hybrid Environmental Models

Errors and Variability Profiles

ECEM/EAML 2004

NN Approximation Accuracy: Typical

ECEM/EAML 2004

Individual Profiles

ECEM/EAML 2004

NCAR CAM-2: 10 YEAR EXPERIMENTS

- CONTROL: the standard NCAR CAM version (available from the CCSM web site) with the original Long-Wave Radiation (LWR) (e.g. Collins, JAS, v. 58, pp. 3224-3242, 2001)
- LWR/NN: the hybrid version of NCAR CAM with NN emulation of the LWR (Krasnopolsky, Fox-Rabinovitz, and Chalikov, 2004, submitted; Fox-Rabinovitz, Krasnopolsky, and Chalikov, 2004 to be submitted)

PRESERVATION of Global Annual Means

Parameter	Original LWR Parameterization	NN Approximation	Difference in %
Mean Sea Level Pressure (<i>hPa</i>)	1011.480	1011.481	0.0001
Surface Temperature (%)	289.003	289.001	0.0007
Total Precipitation (<i>mm/day</i>)	2.275	2.273	0.09
Total Cloudiness (fractions 0.1 to 1.)	0.607	0.609	0.3
LWR Heating Rates (°K/day)	-1.698	-1.700	0.1
Outgoing LWR – OLR (<i>W/m</i> ²)	234.4	234.6	0.08
Latent Heat Flux (W/m ²)	82.84	82.82	0.03
ECEM/EAML 2004	New Synergetic Para	digm: Hybrid	22

Environmental Models

Zonal Mean Vertical Distributions and Differences Between the Experiments

ECEM/EAML 2004

NCAR CAM-2 Zonal Mean Heating Rates 10 Year Average

(a)- Original LWR Parameterization
(b)- NN Approximation
(c)- Difference (a) - (b), contour = 0.05 ° K/day

all in °K/day

New Synergetic Paradigm: Hybrid Environmental Models

1.5

0.5

0

-0.5

-1 -1.5

-2

-2.5

-3

-3.5

-4

NCAR CAM-2 Zonal Mean U 10 Year Average

(a)- Original LWR Parameterization
(b)- NN Approximation
(c)- Difference (a) - (b), contour 0.2 m/sec

all in *m*/sec

NCAR CAM-2 Zonal Mean **Temperature 10 Year Average**

> (a)– Original LWR Parameterization (b)- NN Approximation (c)- Difference (a) – (b), contour 0.1 %

> > all in %

Horizontal Distributions of Model Diagnostics

ECEM/EAML 2004

NCAR CAM-2 LWR Heating Rates (near 850 hPa) **10 Year Average** (a)- Original LWR -0.5 **Parameterization** (b)- NN Approximation -1.5 (c)- Difference (a) - (b) -2.5 all in °K/day -3.5

	Mean	Min	Max
(a)	-1.7	-3.9	-0.87
(b)	-1.7	- 3.9	-0.89
(c)	-0. 003	-0. 27	0.23

New Synergetic Paradigm: Hybrid Environmental Models

10

-1

-2

-3

-4

-4.5

NCAR CAM-2 Sea Level Pressure 10 Year Average

(a)– Original LWR Parameterization
(b)- NN Approximation
(c)- Difference (a) – (b),

all in hPa

	Mean	Min	Max	
(a)	1011.48	979.00	1027.44	
(b)	1011.48	980.23	1027.19	
(c)	-0.002	-1.66	1.95	

New Synergetic Paradigm: Hybrid Environmental Models

1040

1030

1020

1010

990

NCAR CAM-2 Total Cloudiness 10 Year Average

(a) – Original LWR
 Parameterization
 (b) - NN Approximation
 (c) - Difference (a) – (b),
 all *in fractions*

	Mean	Min	Max
(a)	0.607	0.07	0.98
(b)	0.608	0.06	0.98
(c)	0.002	-0.05	0.05

New Synergetic Paradigm: Hybrid Environmental Models

1.1

0.2

0.1

NCAR CAM-2 Total Precipitation 10 Year Average

(a)- Original LWR Parameterization
(b)- NN Approximation
(c)- Difference (a) - (b), all in *mm/day*

	Mean	Min	Max
(a)	2.275	0.022	15.213
(b)	2.273	0.02	14.52
(c)	0.002	0.94	0.65

New Synergetic Paradigm: Hybrid Environmental Models

10

9

8

6

5

2

Horizontal Distributions of Model Prognostics

ECEM/EAML 2004

ECEM/EAML 2004

NCAR CAM-2 Temperature (near 850 hPa) 10 Year Average

(a)– Original LWR
Parameterization
(b)- NN Approximation
(c)- Difference (a) – (b)

all in %

	Mean	Min	Max
(a)	281.1	231.84	298.24
(b)	281.1	232.0	296.4
(c)	-0.03	-0.6	1.1

New Synergetic Paradigm: Hybrid Environmental Models

NCAR CAM-2 Temperature (near 200 hPa) 10 Year Average

(a)– Original LWR
Parameterization
(b)- NN Approximation
(c)- Difference (a) – (b)

all in %

	Mean	Min	Max
(a)	213.87	199.8	219.14
(b)	213.90	200.3	219.12
(c)	0.03	-0.99	0.79

New Synergetic Paradigm: Hybrid Environmental Models

230

225

220

215

210

205

ECEM/EAML 2004

NCAR CAM-2 U (near 850 hPa) 10 Year Average

(a)– Original LWR
Parameterization
(b)- NN Approximation
(c)- Difference (a) – (b)

all in *m*/sec

-15	4				
-20			Mean	Min	Max
		(a)	0.64	-13.56	17.74
		(b)	0.65	-13.56	17.1
		(c)	-0.01	-1.14	1.01

New Synergetic Paradigm: Hybrid Environmental Models

60

30

25

20

15

10

5

0

-5

-10

NCAR CAM-2 U (near 200 hPa) 10 Year Average

(a)– Original LWR
Parameterization
(b)- NN Approximation
(c)- Difference (a) – (b)

all in *m*/sec

15				
20		Mean	Min	Max
	(a)	16.35	-14.57	45.16
	(b)	16.37	-14.39	44.75
	(c)	-0.02	-2.62	2.59

New Synergetic Paradigm: Hybrid Environmental Models

60

30

25

20

15

10

5

0

-5

-10

CONCLUSIONS:

- The proof of concept: Application of MLT/ NN for fast and accurate emulation of model physics components has been successfully demonstrated for the NCAR CAM LWR parameterization and other applications.
- NN emulation of the NCAR CAM LWR is <u>80 times faster</u> and <u>very close</u> to the original LWR parameterization (for other applications up to 10⁵ faster). Speed-up only in the high/adequate accuracy context.
- The simulated diagnostic and prognostic fields are very close for the parallel NCAR CAM climate runs with NN emulation and the original LWR parameterization
- > The conservation properties are very well preserved
- A solid scientific foundation is laid for development of MLT/NN emulations for other NCAR CAM physics components or a complete set of MLT/"Neuro-Physics". Such a <u>focused effort</u> will result in development of a Hybrid CAM.

ECEM/EAML 2004

Computational gains can be used for:

- More frequent calculation of model physics for temporal consistence with model dynamics
- Introducing more sophisticated physics
- Introducing higher model resolution
- Using larger ensembles
- Improving turnaround for model runs
- Speed-up must be considered only in the high/adequate accuracy context!

2005 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE

FOR MEASUREMENT SYSTEMS AND APPLICATIONS

20-22 JULY 2005 GIARDINI NAXOS - TAORMINA, SICILY, ITALY

Special Session on Environmental Applications of Computational Intelligence

SUBMISSION DEADLINE IS 12 MARCH 2005

International Joint Conference on Neural Networks 2005

July 31-August 4, 2005

Montréal, Québec, Canada

Special Session on NN Applications to Earth Sciences

Deadline: January 31, 2005

If you'd like to participate, email to: Vladimir.Krasnopolsky@noaa.gov

ECEM/EAML 2004

DEVELOPED APPROACH HAS BEEN PUBLISHED IN:

- Fox-Rabinovitz, Krasnopolsky, and Chalikov, 2004: "Decadal climate simulations using NN emulations for long wave radiation parameterization", to be submitted
- Krasnopolsky V.M., M.S. Fox-Rabinovitz, and D.V. Chalikov, 2004: "New Approach to Calculation of Atmospheric Model Physics: Accurate and Fast Neural Network Emulation of Long Wave Radiation in a Climate Model", submitted
- Krasnopolsky V.M. and M.S. Fox-Rabinovitz, 2004: "A New Synergetic Paradigm in Environmental Numerical Modeling: Hybrid Environmental Numerical Models Consisting of Deterministic and Machine Learning Components", submitted
- Tolman, H., V. Krasnopolsky, D. Chalikov 2004, "Neural network approximations for nonlinear interactions in wind wave spectra: direct mapping for wind seas in deep water", Ocean Modelling, 2004, in press
- Krasnopolsky V. M. and H. Schiller, 2003: "Some Neural Network Applications in Environmental Sciences. Part I: Forward and Inverse Problems in Geophysical Remote Measurements", Neural Networks, v. 16, 321-334
- Krasnopolsky V. M. and F. Chevallier, 2003: "Some Neural Network Applications in Environmental Sciences. Part II: Advancing Computational Efficiency of Environmental Numerical Models", Neural Networks, v .16, 335- 348
- Krasnopolsky, V. and F. Chevallier, 2001,"Some neural network applications in environmental sciences: Advancing computational efficiency of environmental numerical models", ECMWF Technical Memorandum No. 359
- Krasnopolsky, V., D. Chalikov, H. Tolman, 2002, "A neural network technique to improve computational efficiency of numerical oceanic models", Ocean Modelling, v.4, 363-383
- Krasnopolsky, V.M., W.H. Gemmill, and L.C. Breaker, 1999: "A multi-parameter empirical ocean algorithm for SSM/I retrievals", *Canadian Journal of Remote Sensing*, Vol. 25, No. 5, pp. 486-503
- Krasnopolsky, V. M., 1997: "A neural network-based forward model for direct assimilation of SSM/I brightness temperatures", Technical Note, OMB Contribution No. 140, NOAA/NCEP/EMC, January 1997.
- Krasnopolsky, V., L.C. Breaker, and W.H. Gemmill 1995: A neural network as a nonlinear transfer function model for retrieving surface wind speeds from the special sensor microwave imager, J. Geophys. Res, 100, pp. 11,033-11,045 ECEM/EAML 2004 New Synergetic Paradigm: Hybrid Environmental Models 40

NN Approximation Accuracy and Performance vs. Original Parameterization

Comparisons with ECMWF NN ¹⁾						
Parameter	Model	Bias	RMSE	Mean	σ	Performance
HR	NASA	0.2	0.45			~ 8 times faster
(°K/day)	NCAR	3. 10 ⁻⁵	0.28	-1.40	1.98	~ 80 times faster
OLR	ECMWF	0.8	1.9			
(\\\////-)	NCAR	0.01	1.2	240.5	46.9	

¹⁾ECMWF NN approximation consists of the battery of 40 NNs Operational at ECMWF since October 2003

ECEM/EAML 2004