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OUTLINE

> [NTRODUCTION. Motivation for the study:

Complex Climate Model and its computational
“Bottlenecks”

> APPROACH:

> new hybrid model — combining deterministic modeling &
statistical MLT (Machine Learning Techniques)

> “NeuroPhysics” - NN Emulations for Model Physics
Components

> NCAR CAM-2 Long-Wave Radiation (LWR):

» Accuracy and Performance of NN Emulations
» Comparison of CAM Climate Simulations: two

10 Year Parallel Runs with the Original LWR and its NN
Emulation

» CONCLUSIONS & DISCUSSION
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Interdisciplinary Climate
Model System

Climate Model - One of the Most
Complex Existing Numerical Models
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Inlterdisciplinary Complex Climate & Weather Systems
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Climate Model (1)

The set of conservation laws (mass, energy, momentum, water vapor,

ozone, etc.)

> Deterministic First Principles Models, 3-D Partial Differential
Equations Oéthe Sphere:

p? -D(w, x) = P(w, x)

» w - a3-D prognostic/dependent variable, e.g., temperature
P X -a3-Dindependent variable: x,y,z &t

¥ D - dynamics (spectral or gridpoint)

» P - physics or parameterization of physical processes (1-D vertical
r.n.s. forcing)

> Continuity Equation
> Thermodynamic Equation
> Momentum Equations
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Climate Model (2)

'Physics — P, currently represented by 1-D (vertical) parameterization's

» Major components of P={R, W, C, T, S, CH}:
» R - radiation (long & short wave processes)
» W — convection, and large scale precipitation processes
» C - clouds
» T — turbulence

P S — surface model (land, ocean, ice — air interaction)
» CH - chemistry

> Each component of P is a 1-D parameterization of
complicated set of multi-scale theoretical and empirical
physical process models simplified for computational
reasons

> P s the most time consuming part of climate models!
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Structure of General Circulation Model

Interaction of Major Components

PhyS|cs
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General
Circulation
Model
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Approach

MLT/NN Emulations for Model Physics
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Generic Solution — “NeuroPhysics”

Accurate and Fast NN Emulation for Parameterizations of Physics

Learning from Data
GCM RAEEISLRLFSHON

Set

NN Emulation I

X o> FNN—*Y
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Major Advantages of NNs Relevant for
_Emulating Numerical Model Components:

> NNSs are very generic, accurate and convenient mathematical
(statistical) models which are able to emulate numerical model
components, which are complicated nonlinear input/output
relationships (continuous or almost continuous mappings ).

NNSs are robust with respect to random noise and fault- tolerant.

NNs are analytically differentiable (training, error and sensitivity
analyses). almost free Jacobian!

NNs emulations are accurate and fast but NO FREE LUNCH!

Training is complicated and time consuming nonlinear optimization
task; however training should be done only once for a model version!

Possibility of online adjustment
NNs are well-suited for parallel and vector processing

Yy Yy "y¥

Our applications >> usual applications
In terms of complexity & dimensionality!

We reevaluated and adjusted all basic NN components &
procedures correspondingly!
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Change of Paradigm in Climate Modeling

From Deterministic to Hybrid Models

<:>‘ Dynamics |

Deterministic GCM

— 7l

Hybrid GCM

Deterministic Component

O

Hybrid Component
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NEW METHODOLOGY HAS BEEN
SUESESSEUL Y, ARPPLIED T©

>Atmospheric Applications:

>NCAR Radiation Parameterization

»>»ECMWF Long Wave Radiation Parameterization,;
operational in ECMWEF since 2003

»Satellite Data Processing Component (SSM/I),
operational NOAA/NCEP Global Data Assimilation
System since 1998

>Qceanic Applications:

»(0Ocean Model at NCEP: Equation of State (density
and salinity of sea water)

»(0Ocean Wind Wave Model at NCEP: Nonlinear
Wave-Wave Interaction (superparameterization)
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NNs for NCAR CAM-2 Long
Wave Radiation
Parameterization
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NN for NCAR CAM-2 Physics

CAM-2 Long Wave Radiation
« Long Wave Radiative Transfer:

F*(p)=B(p)-&(p, P)+ [ @(p, p)-dB(p)

F'(p)=B(p.) - [ a(p, p)-dB(p)

B(p)=oc-T*(p) - the Stefan— Boltzman relation

 Absorptivity & Emissivity (optical properties):

[€dB, (p")/dT (P} -7, (p, p7))-dv
AR dB(p)/dT (p)

TBV(Pt)'(l—fv(pt, p))-dv
g(pt,p): B(pt)

B,(p) -—the Plank function
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Neural Network for NCAR LW Radiation

NN characteristics

2> 220 Inputs:

» Profiles: temperature; humidity; ozone, methane, cfcl1, cfc12, &
N,O mixing ratios, pressure, cloudiness, emissivity

» Relevant surface characteristics: surface pressure, upward LW
flux on a surface - flwupcgs

> 33 Outputs:
» Profile of heating rates (26)
¥ 7 LW radiation fluxes: flns, fInt, flut, flnsc, fIntc, flutc, flwds

> Hidden Layer: One layer with 90 to 300 neurons
> Training: nonlinear optimization in the space with
dimensionality of 30,000 to 100,000

» Training Data Set: Subset of about 100,000 instantaneous profiles
simulated by CAM-2 for the 1-st year

» Training time: about 7 to 20 days (SGI workstation)
¥ Training iterations: 2,000 to 10,000

> Validation on Independent Data:

» Validation Data Set (independent data): about 100,000
Instantaneous profiles simulated by CAM-2 for the 2-nd year
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NN Approximation Accuracy and

Performance vs. Original Parameterization

Parameter | Model Bias | RMSE | Mean c Performance
NASA | 1.10%4 | 0.32 1.52 1.46
HR
(°K/day) | ncar | 3.105| 028 | -1.40 | 1.98 | e
times faster
NASA | 0.009 | 1.06 253.4 | 46.3
OLR
(W/m?)
NCAR 0.01 1.2 240.5 | 46.9
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Errors and Variability Profiles

Bias and RMSE profiles in o Bias and RMSE Profiles in K/day
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NN Approximat

107

1.5
1.0

0.5

NN HR K/d
Bias in o

10

2.9

5]
T T T T T T
1

2.0

1.5

1.0

Error Distribution
RMSE in o

—
LINNL I I L B B B e
1

0.5

UE.. L | _jIL 1 1

* 4 Efrofink/id* °©
ECEM/EAML 2004

2.0

0.0

on Accuracy: Typical

-8

6 4 2 0 2
HR in K/d
New Synergetic Paradigm: Hybrid Environmental Models

P =626 mb
Level Orig. NN
Statistics | K/day | K/day
For HRs
Min Val. -7.7 -8.2
Max Val. 6.1 5.2
Mean -0.779 | -0.778
o) 0.27 0.26
Bias - 1.x103
RMSE - 0.145
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Individual Profiles

Profile #36000
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NCAR CAM-2: 10 YEAR EXPERIMENTS

> CONTROL: the standard NCAR CAM version
(available from the CCSM web site) with the original

Long-Wave Radiation (LWR) (e.g. Collins, JAS, v. 58,
pp. 3224-3242, 2001)

> | WR/NN: the hybrid version of NCAR CAM with NN
emulation of the LWR (Krasnopolsky, Fox-
Rabinovitz, and Chalikov, 2004, submitted; Fox-

Rabinovitz, Krasnopolsky, and Chalikov, 2004 to be
submitted)
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PRESERVATION of Global Annual Means

Parameter Original LWR NN Difference
Parameterization | Approximation In %
Mean Sea Level 1011.480 1011.481 0.0001
Pressure (hPa)
Surface Temperature 289.003 289.001 0.0007
(K)
Total Precipitation 2.275 2.273 0.09
(mm/day)
Total Cloudiness 0.607 0.609 0.3
(fractions 0.1 to 1.)
LWR Heating Rates -1.698 -1.700 0.1
(K/day)
Outgoing LWR — 234.4 234.6 0.08
OLR (W/m?)
Latent Heat Flux 82.84 82.82 0.03
(W/m?2)

ECEM/EAML 2004

New Synergetic Paradigm: Hybrid

Environmental Models
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Zonal Mean Vertical Distributions
and
Differences Between the
Experiments
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NCAR—CAM 10 YEAR QRL
(a) ORIGINAL LWR QRL

NCAR CAM-2 Zonal Mean
Heating Rates
10 Year Average
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Parameterization

(b)- NN Approximation

(c)- Difference (a) — (b),
contour = 0.05 °K/day
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NCAR—CAM 10 YEAR U-—-WIND
(a) ORIGINAL LWR U—WIND

20 RS EQ 30N 90N
(b) LWR/NN U—WIND

NCAR CAM-2 Zonal Mean U
10 Year Average

(a)- Original LWR
Parameterization

(b)- NN Approximation

(c)- Difference (a) — (b),
contour 0.2 m/sec

all in m/sec
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NCAR—CAM 10 YEAR T
(a) ORIGINAL LWR T

NCAR CAM-2 Zonal Mean

o
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Horizontal Distributions of Model
Diagnostics
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NCAR—CAM 10 YEAR QRL-—-867

(a) ORIGINAL LWR NCAR CAM-2 LWR Heating

min = —%8118680 mean = —1.85758 maox = —Q.870998

Rates
(near 850 hPa)
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N AI? 10 YEAR PSL
a) ORIGINAL LWR
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NCAR—CAM 10 YEAR ELDTOT
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NCAR—Q)AM 10 YEAR PRECT
(a) ORIGINAL LWR

min = 00223188 mean = 227527 max = 168.2128
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NCAR CAM-2 Total

Precipitation
10 Year Average

(a)- Original LWR

Parameterization

(b)- NN Approximation
(c)- Difference (a) — (b),

all in mm/day

Mean | Min Max
(a) 2.275 | 0.022 | 15.213
(b) 2.273 0.02 14.52
(c) 0.002 0.94 0.65
31
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Horizontal Distributions of Model
Prognostics

ECEM/EAML 2004 New Synergetic Paradigm: Hybrid Environmental Models 32



NCAR—CAM 10 YEAR T—867
(a) ORIGINAL LWR

min = 251,835 mean = 281,084 max = 20255 NCAR CAM-2 Temperature
(near 850 hPa)
10 Year Average

(a)- Original LWR
Parameterization

(b)- NN Approximation
(c)- Difference (a) — (b)

(b) LWR/NN
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all in K
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NCAR—-CAM 10 YEAR T—192
(a) ORIGINAL LWR

min = 198.842 mean = 213,867 max = 219,144
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NCAR CAM-2 Temperature
(near 200 hPa)
10 Year Average

(a)- Original LWR
Parameterization
(b)- NN Approximation
(c)- Difference (a) — (b)

all in K

Mean | Min Max
(a) 213.87 | 199.8 | 219.14

(b) 213.90 | 200.3 | 219.12

(c) 0.03 -0.99 0.79
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NCAR—CAM 10 YEAR U—WIND—-867
(a) ORIGINAL LWR

NCAR CAM-2 U
(near 850 hPa)
10 Year Average

(a)- Original LWR
Parameterization
(b)- NN Approximation
(c)- Difference (a) — (b)
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(C) -0.01 -1.14 1.01
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NCAR—CAM 10 YEAR U—-WIND—-192
(a) ORIGINAL LWR

min = —14.5748 mean = 183533 max = 48.1845 NCAR CAM-2 U
== = (near 200 hPa)
10 Year Average

(a)- Original LWR
Parameterization
(b)- NN Approximation
(c)- Difference (a) — (b)
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(a) 16.35 -14.57 | 45.16

(b) 16.37 | -14.39 | 44.75

(C) -0.02 -2.62 2.59

%0 120w 60W
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CONCLUSIONS:

> The proof of concept: Application of MLT/ NN for fast and
accurate emulation of model physics components has been
successfully demonstrated for the NCAR CAM LWR
parameterization and other applications.

> NN emulation of the NCAR CAM LWR is 80 times faster
and very close to the original LWR parameterization (for
other applications up to 10° faster). Speed-up only in the
high/adequate accuracy context.

> The simulated diagnostic and prognostic fields are very
close for the parallel NCAR CAM climate runs with NN
emulation and the original LWR parameterization

The conservation properties are very well preserved

A solid scientific foundation is laid for development of
MLT/NN emulations for other NCAR CAM physics
components or a complete set of MLT/”"Neuro-Physics”.
Such a focused effort will result in development of a Hybrid
CAM.
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Computational gains can be used for:

More frequent calculation of model
physics for temporal consistence with
model dynamics

Introducing more sophisticated physics
Introducing higher model resolution
Using larger ensembles

Improving turnaround for model runs

Speed-up must be considered only in the
high/adequate accuracy context!
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2005 IEEE INTERNATIONAL CONFERENCE ON
COMPUTATIONAL INTELLIGENCE

FOR MEASUREMENT SYSTEMS AND APPLICATIONS

20-22 JULY 2005
GIARDINI NAXOS - TAORMINA, SICILY, ITALY

Special Session on Environmental Applications of
Computational Intelligence

SUBMISSION DEADLINE IS 12 MARCH 2005

International Joint Conference on Neural Networks 2005

July 31-August 4, 2005
Montréal, Québec, Canada

Special Session on NN Applications to Earth Sciences
Deadline: January 31, 2005

If you'd like to participate, email to: Vladimir.Krasnopolsky@noaa.gov
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DEVELOPED APPROACH HAS BEEN PUBLISHED IN:

» Fox-Rabinovitz, Krasnopolsky, and Chalikov, 2004: “Decadal climate simulations using NN emulations
for long wave radiation parameterization”, to be submitted

> Krasnopolsky V.M., M.S. Fox-Rabinovitz, and D.V. Chalikov, 2004: “New Approach to Calculation of
Atmospheric Model Physics: Accurate and Fast Neural Network Emulation of Long Wave Radiation in
a Climate Model”, submitted

> Krasnopolsky V.M. and M.S. Fox-Rabinovitz, 2004: “A New Synergetic Paradigm in Environmental
Numerical Modeling: Hybrid Environmental Numerical Models Consisting of Deterministic and
Machine Learning Components”, submitted

> Tolman, H., V. Krasnopolsky, D. Chalikov 2004, “Neural network approximations for nonlinear
interactions in wind wave spectra: direct mapping for wind seas in deep water”, Ocean Modelling,
2004, in press

» Krasnopolsky V. M. and H. Schiller, 2003: "Some Neural Network Applications in Environmental
Sciences. Part I: Forward and Inverse Problems in Geophysical Remote Measurements", Neural
Networks, v. 16, 321-334

» Krasnopolsky V. M. and F. Chevallier, 2003: "Some Neural Network Applications in Environmental
Sciences. Part Il: Advancing Computational Efficiency of Environmental Numerical Models", Neural
Networks, v .16, 335- 348

» Krasnopolsky, V. and F. Chevallier, 2001,” Some neural network applications in environmental
sciences: Advancing computational efficiency of environmental numerical models”, ECMWF
Technical Memorandum No. 359

» Krasnopolsky, V., D. Chalikov, H. Tolman, 2002, “A neural network technigue to improve
computational efficiency of numerical oceanic models”, Ocean Modelling, v.4, 363-383

» Krasnopolsky, V.M., W.H. Gemmill, and L.C. Breaker, 1999: "A multi-parameter empirical ocean
algorithm for SSM/I retrievals", Canadian Journal of Remote Sensing,, Vol. 25, No. 5, pp. 486-503

» Krasnopolsky, V. M., 1997: "A neural network-based forward model for direct assimilation of SSM/I
brightness temperatures”, Technical Note, OMB Contribution No. 140, NOAA/NCEP/EMC, January
1997.

» Krasnopolsky, V., L.C. Breaker, and W.H. Gemmill 1995: A neural network as a nonlinear transfer

function model for retrieving surface wind speeds from the special sensor microwave imager, J.
Geophys. Res, 100, pp. 11,033-11,045
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NN Approximation Accuracy and Performance vs. Original Parameterization

Comparisons with ECMWF NN?

Parameter Model Bias RMSE Mean c Performance
NASA 0.2 0.45 e :3
HR fimes taster
(°K/day) ~ 80
NCAR 3.10° 0.28 -1.40 1.98

times faster

OLR ECMWF 0.8 1.9
(W/m?)

NCAR 0.01 1.2 240.5 46.9

DECMWEF NN approximation consists of the battery of 40 NNs
Operational at ECMWEF since October 2003
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