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OUTLINE
INTRODUCTION. Motivation for the study: 
Complex Climate Model and its computational 
“Bottlenecks” 
APPROACH:

new hybrid model – combining deterministic modeling & 
statistical MLT (Machine Learning Techniques)
“NeuroPhysics” - NN Emulations for Model Physics
Components  

NCAR CAM-2 Long-Wave Radiation (LWR):
Accuracy and Performance of NN Emulations
Comparison of CAM Climate Simulations: two 

10 Year Parallel Runs with the Original LWR and its NN 
Emulation

CONCLUSIONS & DISCUSSION
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Interdisciplinary Climate 
Model System

Climate Model - One of the Most 
Complex Existing Numerical Models 
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Interdisciplinary Complex Climate & Weather Systems

HYDROLOGY BIOSPHERE

LAND OCEAN
DYNAMICS PHYSICS:

Turbulence

BIOLOGY: Phytoplankton

ATMOSPHERE
DYNAMICS: 

PDE on the sphere
PHYSICS: Radiation, Clouds, 

Convection, Turbulence

DYNAMICS: 
Transport

CONSTITUENCIES:
Greenhouse Gases, 

Pollutants, Aerosols, 
Ozone

CHEMISTRY

Satellite Data

Hurricanes
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Climate Model (1)
The set of conservation laws (mass, energy, momentum, water vapor, 

ozone, etc.)

Deterministic First Principles Models, 3-D Partial Differential 
Equations on the Sphere:

ψ - a 3-D prognostic/dependent variable, e.g., temperature
x - a 3-D independent variable: x, y, z & t
D  - dynamics (spectral or gridpoint)
P  - physics or parameterization of physical processes (1-D vertical 
r.h.s. forcing)

Continuity Equation
Thermodynamic Equation
Momentum Equations

( , ) ( , )D x P x
t
ψ ψ ψ∂
+ =
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Climate Model (2)
Physics – P, currently represented by 1-D (vertical) parameterizations 

Major components of P = {R, W, C, T, S, CH}:
R - radiation (long & short wave processes)
W – convection, and large scale precipitation processes
C - clouds
T – turbulence
S – surface model (land, ocean, ice – air interaction)
CH - chemistry

Each component of P is a 1-D parameterization of 
complicated set of multi-scale theoretical and empirical 
physical process models simplified for computational 
reasons 
P is the most time consuming part of climate models!
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Structure of General Circulation Model
Interaction of Major Components

Physics Dynamics

Other
General 

Circulation 
Model
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Distribution of Total Climate Model Calculation Time
12%

66%

22%

Dynamics
Physics
Other

Current NCAR Climate Model 
(T42 x L26): ∼ 3° x 3.5°

6%

89%

5%

Near-Term Upcoming Climate 
Models (estimated) : ∼ 1° x 1°
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Approach

MLT/NN Emulations for Model Physics
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Generic Solution – “NeuroPhysics” 
Accurate and Fast NN Emulation for Parameterizations of Physics

Learning from Data
GCM

X Y

Parameterization

F

NN Emulation

YX FNN

Training
Set …, {Xi, Yi}, …  ∀Xi∈ Dphys

NN Emulation

FNN
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Major Advantages of NNs Relevant for 
Emulating Numerical Model Components:

NNs are very generic, accurate and convenient mathematical 
(statistical) models which are able to emulate numerical model 
components, which are complicated nonlinear input/output 
relationships (continuous or almost continuous mappings ).
NNs are robust with respect to random noise and fault- tolerant.
NNs are analytically differentiable (training, error and sensitivity 
analyses): almost free Jacobian!
NNs emulations are accurate and fast but NO FREE LUNCH!
Training is complicated and time consuming nonlinear optimization 
task; however training should be done only once for a model version!
Possibility of online adjustment
NNs are well-suited for parallel and vector processing

Our applications >> usual applications                          
in terms of complexity & dimensionality!

We reevaluated and adjusted  all basic NN components & 
procedures correspondingly!
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Change of Paradigm in Climate Modeling

From Deterministic to Hybrid Models

Physics Dynamics

Other

Physics Dynamics

Other

Hybrid GCMDeterministic GCM

Deterministic Component

Hybrid Component
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NEW METHODOLOGY HAS BEEN 
SUCSESSFULY APPLIED TO

Atmospheric Applications:
NCAR Radiation Parameterization
ECMWF Long Wave Radiation Parameterization; 
operational in ECMWF since 2003
Satellite Data Processing Component (SSM/I), 
operational NOAA/NCEP Global Data Assimilation 
System since 1998 

Oceanic Applications:
Ocean Model at NCEP: Equation of State (density 
and salinity of sea water)
Ocean Wind Wave Model at NCEP: Nonlinear 
Wave-Wave Interaction (superparameterization)
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NNs for NCAR CAM-2 Long 
Wave Radiation 

Parameterization
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NN for NCAR CAM-2 Physics 
CAM-2 Long Wave Radiation

• Long Wave Radiative Transfer:

• Absorptivity & Emissivity (optical properties):

4
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Neural Network for NCAR LW Radiation 
NN characteristics

220 Inputs:
Profiles: temperature; humidity; ozone, methane, cfc11, cfc12, & 
N2O mixing ratios, pressure, cloudiness, emissivity
Relevant surface characteristics: surface pressure, upward LW 
flux on a surface - flwupcgs

33 Outputs:
Profile of heating rates (26)
7 LW radiation fluxes: flns, flnt, flut, flnsc, flntc, flutc, flwds

Hidden Layer: One layer with 90 to 300 neurons 
Training: nonlinear optimization in the space with 
dimensionality of 30,000 to 100,000

Training Data Set: Subset of about 100,000 instantaneous profiles 
simulated by CAM-2 for the 1-st year
Training time: about 7 to 20 days (SGI workstation)
Training iterations: 2,000 to 10,000

Validation on Independent Data:
Validation Data Set (independent data): about 100,000 
instantaneous profiles simulated by CAM-2 for the 2-nd year
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NN Approximation Accuracy and 
Performance vs. Original Parameterization

Parameter Model Bias RMSE Mean σ Performance

NASA 1. 10-4 0.32 1.52 1.46

NASA 0.009 1.06 253.4 46.3

1.98

46.9

HR
(°K/day) NCAR  3. 10-5 0.28 -1.40 ∼ 80

times faster

OLR
(W/m2)

NCAR 0.01 1.2 240.5
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Errors and Variability Profiles
Bias and RMSE profiles in σ Bias and RMSE Profiles in K/day
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NN Approximation Accuracy: Typical
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P ≅ 626 mb

Level 
Statistics
For HRs

Orig.
K/day

NN
K/day

Min Val. -7.7 -8.2

Max Val. 6.1 5.2

Mean -0.779 -0.778

σ 0.27 0.26

Bias - 1.×10-3

RMSE - 0.145
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Individual Profiles
Black – Original 
Parameterization
Red – NN with 90 neurons
Blue – NN with 150 neurons

PRMSE = 0.18 & 0.10 K/day PRMSE = 0.05 & 0.04 K/dayPRMSE = 0.11 & 0.06 K/day
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NCAR CAM-2: 10 YEAR EXPERIMENTS

CONTROL: the standard NCAR CAM version 
(available from the CCSM web site) with the original
Long-Wave Radiation (LWR) (e.g. Collins, JAS, v. 58, 
pp. 3224-3242, 2001)
LWR/NN: the hybrid version of NCAR CAM with NN 
emulation of the LWR (Krasnopolsky, Fox-
Rabinovitz, and Chalikov, 2004, submitted; Fox-
Rabinovitz, Krasnopolsky, and Chalikov, 2004 to be 
submitted)
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PRESERVATION of Global Annual Means

Parameter Original LWR 
Parameterization

NN 
Approximation

Difference
in %

Mean Sea Level 
Pressure (hPa)

1011.480 1011.481 0.0001

Surface Temperature 
(°K)

289.003 289.001 0.0007

Total Precipitation 
(mm/day)

2.275 2.273 0.09

Total Cloudiness 
(fractions 0.1 to 1.)

0.607 0.609 0.3

LWR Heating Rates 
(°K/day)

-1.698 -1.700 0.1

Outgoing LWR –
OLR (W/m2)

234.4 234.6 0.08

Latent Heat Flux 
(W/m2)

82.84 82.82 0.03
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Zonal Mean Vertical Distributions 
and 

Differences Between the 
Experiments
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NCAR CAM-2 Zonal Mean 
Heating Rates

10 Year Average 

(a)– Original LWR 
Parameterization

(b)- NN Approximation
(c)- Difference (a) – (b), 

contour = 0.05 °K/day

all in °K/day
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NCAR CAM-2 Zonal Mean U
10 Year Average 

(a)– Original LWR 
Parameterization

(b)- NN Approximation
(c)- Difference (a) – (b), 

contour 0.2 m/sec

all in m/sec
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NCAR CAM-2 Zonal Mean 
Temperature

10 Year Average 

(a)– Original LWR 
Parameterization

(b)- NN Approximation
(c)- Difference (a) – (b), 

contour 0.1°K

all in °K
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Horizontal Distributions of Model 
Diagnostics
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NCAR CAM-2 LWR Heating 
Rates 

(near 850 hPa)
10 Year Average 

(a)– Original LWR 
Parameterization

(b)- NN Approximation
(c)- Difference (a) – (b)   

all in °K/day

Mean Min Max

(a) -1.7 -3.9 -0.87

(b) -1.7 - 3.9 -0.89

(c) -0. 003 -0. 27 0.23
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NCAR CAM-2 
Sea Level Pressure 

10 Year Average 

(a)– Original LWR 
Parameterization

(b)- NN Approximation
(c)- Difference (a) – (b), 

all in hPa

Mean Min Max

(a) 1011.48 979.00 1027.44

(b) 1011.48 980.23 1027.19

(c) -0.002 -1.66 1.95
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NCAR CAM-2 Total 
Cloudiness

10 Year Average 

(a)– Original LWR 
Parameterization

(b)- NN Approximation
(c)- Difference (a) – (b), 
all in fractions

Mean Min Max

(a) 0.607 0.07 0.98

(b) 0.608 0.06 0.98

(c) 0.002 -0.05 0.05
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NCAR CAM-2 Total 
Precipitation

10 Year Average 

(a)– Original LWR 
Parameterization

(b)- NN Approximation
(c)- Difference (a) – (b), 

all in mm/day

Mean Min Max

(a) 2.275 0.022 15.213

(b) 2.273 0.02 14.52

(c) 0.002 0.94 0.65
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Horizontal Distributions of Model 
Prognostics
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NCAR CAM-2 Temperature 
(near 850 hPa) 

10 Year Average 

(a)– Original LWR 
Parameterization

(b)- NN Approximation
(c)- Difference (a) – (b)

all in °K

Mean Min Max
(a) 281.1 231.84 298.24

(b) 281.1 232.0 296.4

(c) -0.03 -0.6 1.1
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NCAR CAM-2 Temperature 
(near 200 hPa) 

10 Year Average 

(a)– Original LWR 
Parameterization

(b)- NN Approximation
(c)- Difference (a) – (b)

all in °K

Mean Min Max
(a) 213.87 199.8 219.14

(b) 213.90 200.3 219.12

(c) 0.03 -0.99 0.79
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NCAR CAM-2 U
(near 850 hPa) 

10 Year Average 

(a)– Original LWR 
Parameterization

(b)- NN Approximation
(c)- Difference (a) – (b)

all in m/sec

Mean Min Max
(a) 0.64 -13.56 17.74

(b) 0.65 -13.56 17.1

(c) -0.01 -1.14 1.01
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NCAR CAM-2 U
(near 200 hPa) 

10 Year Average 

(a)– Original LWR 
Parameterization

(b)- NN Approximation
(c)- Difference (a) – (b)

all in m/sec

Mean Min Max
(a) 16.35 -14.57 45.16

(b) 16.37 -14.39 44.75

(c) -0.02 -2.62 2.59
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CONCLUSIONS:
The proof of concept: Application of MLT/ NN for fast and 
accurate emulation of model physics components has been 
successfully demonstrated for the NCAR CAM LWR 
parameterization and other applications.
NN emulation of the NCAR CAM LWR is 80 times faster
and very close to the original LWR parameterization (for 
other applications up to 105 faster). Speed-up only in the 
high/adequate accuracy context.
The simulated diagnostic and prognostic fields are very 
close for the parallel NCAR CAM climate runs with NN 
emulation and the original LWR parameterization
The conservation properties are very well preserved
A solid scientific foundation is laid for development of 
MLT/NN emulations for other NCAR CAM physics 
components or a complete set of MLT/”Neuro-Physics”.  
Such a focused effort will result in development of a Hybrid 
CAM.
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Computational gains can be used for:

• More frequent calculation of model 
physics for temporal consistence with 
model dynamics

• Introducing more sophisticated physics
• Introducing higher model resolution
• Using larger ensembles
• Improving turnaround for model runs
• Speed-up must be considered only in the 

high/adequate accuracy context!
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2005 IEEE INTERNATIONAL CONFERENCE ON 
COMPUTATIONAL INTELLIGENCE

FOR MEASUREMENT SYSTEMS AND APPLICATIONS
20-22 JULY 2005

GIARDINI NAXOS - TAORMINA, SICILY, ITALY

Special Session on Environmental Applications of 
Computational Intelligence

SUBMISSION DEADLINE IS 12 MARCH 2005

International Joint Conference on Neural Networks 2005
July 31-August 4, 2005

Montréal, Québec, Canada

Special Session on NN Applications to Earth Sciences
Deadline: January 31, 2005

If you’d like to participate, email to: Vladimir.Krasnopolsky@noaa.gov
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DEVELOPED APPROACH HAS BEEN PUBLISHED IN:
Fox-Rabinovitz, Krasnopolsky, and Chalikov, 2004: “Decadal climate simulations using NN emulations 
for long wave radiation parameterization”, to be submitted  
Krasnopolsky V.M., M.S. Fox-Rabinovitz, and D.V. Chalikov, 2004: “New Approach to Calculation of 
Atmospheric Model Physics: Accurate and Fast Neural Network Emulation of Long Wave Radiation in 
a Climate Model”, submitted
Krasnopolsky V.M. and M.S. Fox-Rabinovitz, 2004: “A New Synergetic Paradigm in Environmental 
Numerical Modeling: Hybrid Environmental Numerical Models Consisting of Deterministic and 
Machine Learning Components”, submitted
Tolman, H., V. Krasnopolsky, D. Chalikov 2004, “Neural network approximations for nonlinear 
interactions in wind wave spectra: direct mapping for wind seas in deep water”, Ocean Modelling, 
2004, in press
Krasnopolsky V. M. and H. Schiller, 2003: "Some Neural Network Applications in Environmental 
Sciences. Part I: Forward and Inverse Problems in Geophysical Remote Measurements", Neural 
Networks, v. 16, 321-334
Krasnopolsky V. M. and F.  Chevallier, 2003: "Some Neural Network Applications in Environmental 
Sciences. Part II: Advancing Computational Efficiency of Environmental Numerical Models",  Neural 
Networks, v .16, 335- 348  
Krasnopolsky, V. and F. Chevallier, 2001,”Some neural network applications in environmental 
sciences: Advancing computational efficiency of environmental numerical models”, ECMWF 
Technical Memorandum No.  359
Krasnopolsky, V., D. Chalikov, H. Tolman, 2002, “A neural network technique to improve 
computational efficiency of numerical oceanic models”, Ocean Modelling, v.4, 363-383
Krasnopolsky, V.M., W.H. Gemmill, and L.C. Breaker, 1999: "A multi-parameter empirical ocean 
algorithm for SSM/I retrievals", Canadian Journal of Remote Sensing,, Vol. 25, No. 5, pp. 486-503
Krasnopolsky, V. M., 1997: "A neural network-based forward model for direct assimilation of SSM/I 

brightness temperatures", Technical Note, OMB Contribution No. 140, NOAA/NCEP/EMC, January 
1997. 
Krasnopolsky, V., L.C. Breaker, and W.H. Gemmill 1995: A neural network as a nonlinear transfer 
function model for retrieving surface wind speeds from the special sensor microwave imager, J. 
Geophys. Res, 100, pp. 11,033-11,045
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NN Approximation Accuracy and Performance vs. Original Parameterization

Comparisons with ECMWF NN1)

Parameter Model Bias RMSE Mean σ Performance

NASA 0.2 0.45

1.98

46.9

∼ 8 
times faster

NCAR  3. 10-5 0.28 -1.40
∼ 80

times faster

ECMWF 0.8 1.9OLR
(W/m2)

NCAR 0.01 1.2 240.5

HR
(°K/day)

1)ECMWF NN approximation consists of the battery of 40 NNs
Operational at ECMWF since October 2003
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