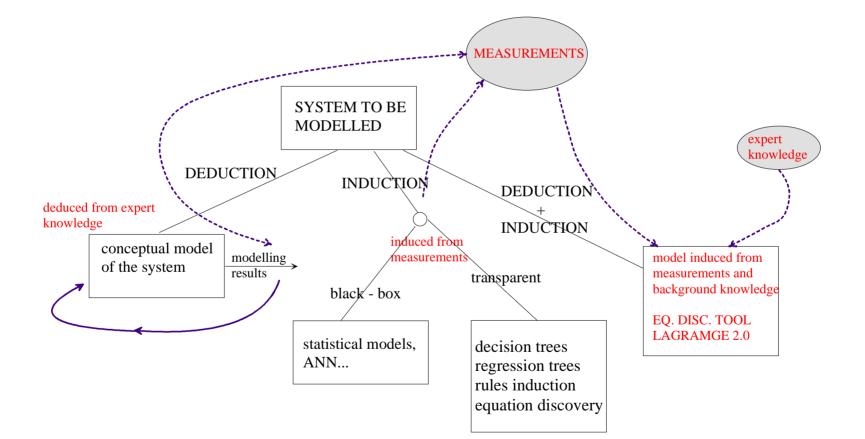
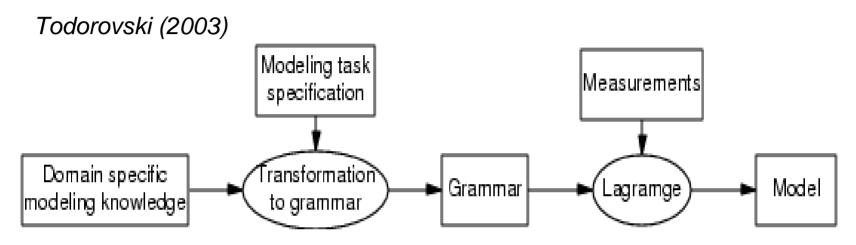


University of Ljubljana Faculty of Civil and Geodetic Engineering Institute of Sanitary Engineering

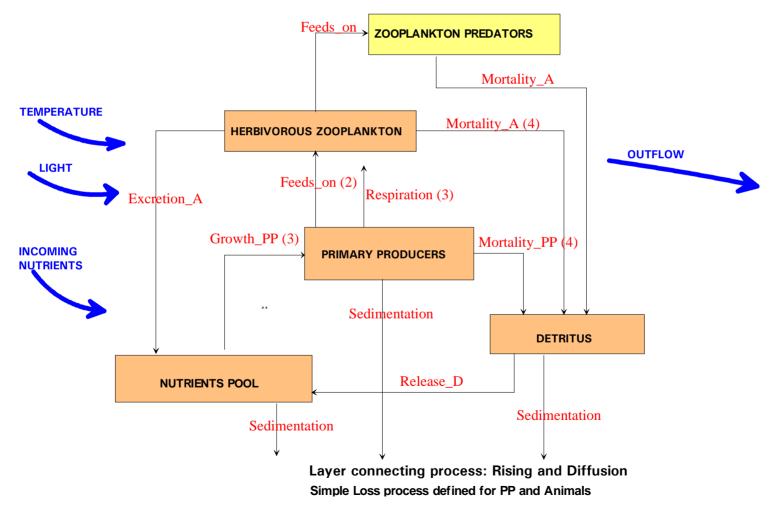

Domain library construction for knowledgebased equation discovery: An application in limnology

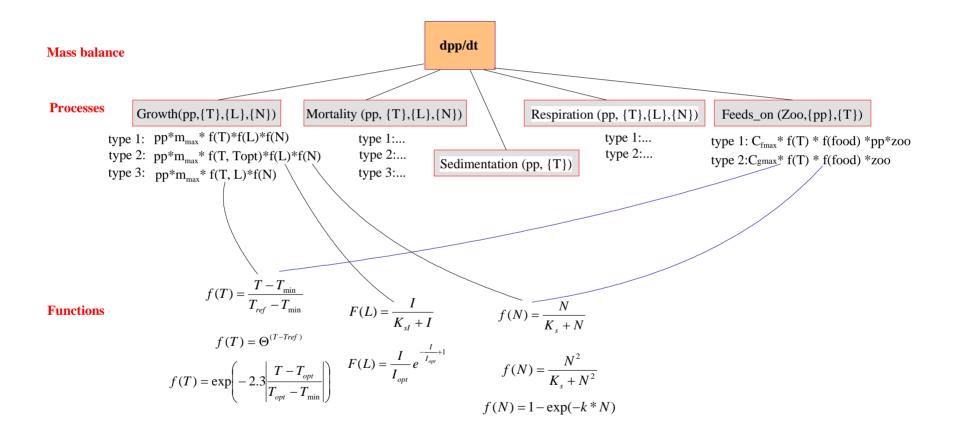
Nataša Atanasova, Ljupčo Todorovski, Boris Kompare, Sašo Džeroski


Overview

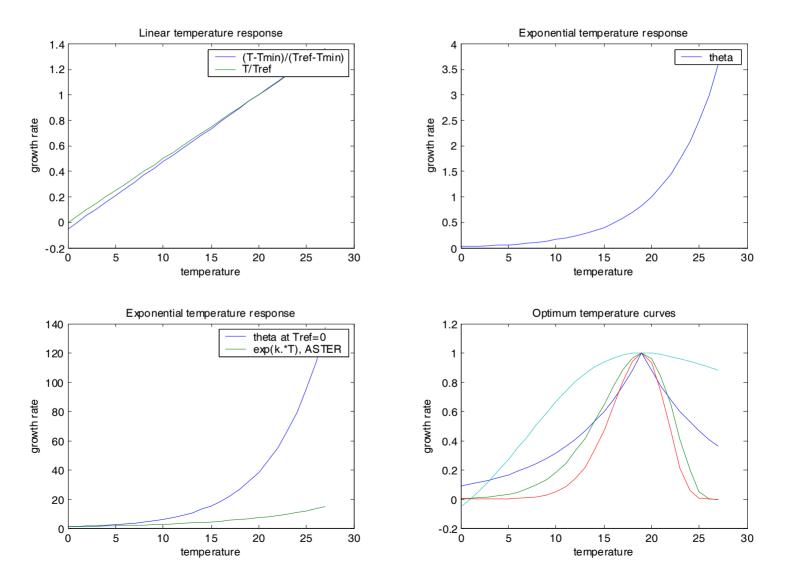
- Motivation for automated modelling
- Domain knowledge for modelling of population dynamics in lake ecosystems
- Formalization of the domain knowledge for Lagramge 2
- Application of Lagramge 2: Lake Bled

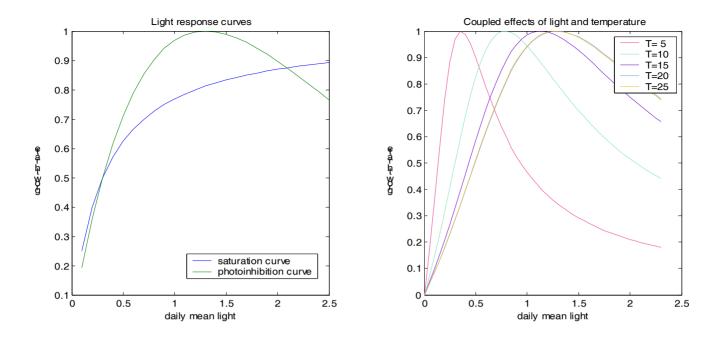
Motivation for automated modellingmodelling procedures

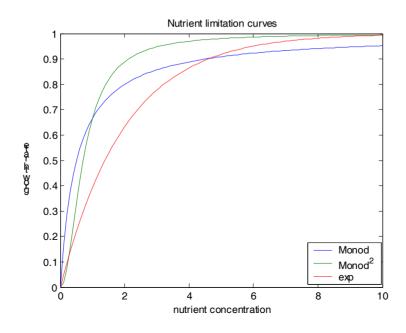

LAGRAMGE 2: how it works?


- from task specification and knowledge library to grammar
- using the grammar for equation discovery with lagramge

Generalized scheme of population dynamics processes and variables


IN EACH LAYER:




Formalized population dynamics knowledge an example for primary producer mass balance

Growth rate influences and limitations

Process formalisation in the library the process Growth_PP

Growth of a primary producer (pp) is influenced by temperature and limited by light and nutrients

$$\frac{dpp}{dt} = \mu \cdot pp$$

most models

$$\mu = \mu_{\max}(T_{ref})f(T)f(L)f(P,N,C)$$

Bendoricchio 1994, Topt is a variable

Talbot et al., 1991: the Aster model,

$$\mu = \mu_{\max}(T_{ref})f(T, Topt)f(L)f(P, N, C)$$
$$\mu = \mu_{\max}(T_{ref})f(T, L)f(P, N, C)$$

$$f(P, N, C) = f(P)f(N)f(C)$$
$$f(P, N, C) = \min[f(P), f(N), f(C)]$$
$$f(P, N, C) = \frac{f(P) + f(N) + f(C)}{n}$$

рр	primary producer concentration
μ	growth rate [1/time]
f(T)	temperature influence function
f(L)	light limitation function
f(N,P,C)	nutrients limitation function

Library

process class PP_growth (Primary_producer pp, Inorganics ns, Temperatures ts, Lights ls)

process class PP_growth_type_1() is PP_growth
 expression pp*const(max_growth_rate, 0.01, 0.1, 4)*
 Food_limitations(ns)*Temp_influences(ts)*
 Light_limitations(ls)

process class PP_growth_type_2() is PP_growth
 expression pp*const(max_growth_rate, 0.01, 0.1, 4)*
 Food_limitations(ns)*Light_limitations(ls)*
 product({t1,t2}, t1 in ts, Temp_influence_opt(t1,t2))

```
process class PP_growth_type_3() is PP_growth
    expression pp*const(max_growth_rate, 0.01, 0.1, 4)*
    Food_limitations(ns)*
    product({t,l}, t in ts, l in ls, Light_temp(t, l))
```

Combining scheme (mass balances)

combining scheme Lake(Primary_producer pp)

time_deriv(pp) =

- - -

- + sum({food, ts, ls}, true, PP_growth(pp, food, ts, ls))
- sum({ts}, true, Loss(pp, ts))
- sum({ts,ns}, true, Respiration_PP(pp, ts, ns))
- sum({ts,ns}, true, Mortality_PP(pp, ts, ns))
- sum({}, true, Outflow(pp))
- sum({}, true, Sedimentation(pp))
- + sum({pp1}, true, Rising(pp,pp1))
- sum({a, food, ts}, pp in food, Feeds_on(a, food, ts))*pp

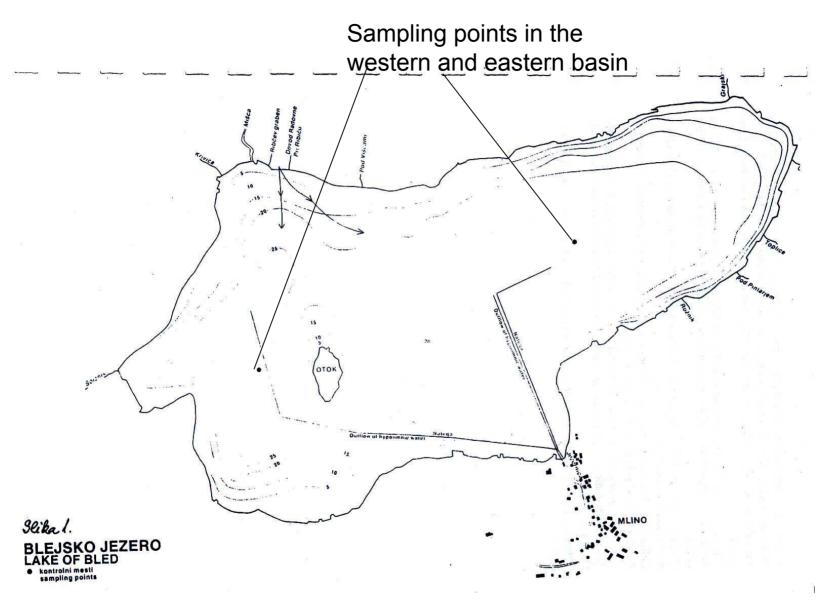
The knowledge base

- Supports:
 - Food chain modelling in a lake
 - 0 dimensional models
 - N box models i.e., supports modelling of stratified lakes
 - Fixed internal nutrient levels in primary producers and animals
- Complexity of the models is defined by the expert, i.e. number of state variables and processes

Example of automated modeling

Case study: Lake Bled

Vol. = $25.7 \times 10^{6} \text{ m}^{3}$ Area = $1.47 \times 10^{6} \text{ m}^{2}$ Max. depth = 30 m(western basin) Avg. depth = 17.5 m

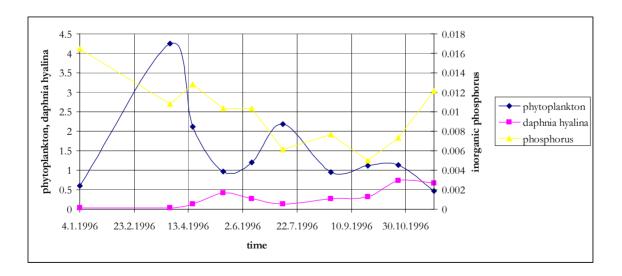

Ae = 0.98*10⁶ m² Aw= 0.49*10⁶ m²

Oscillatoria rubescens in Lake of Bled, November 1999. Photo by Mirko Kunšič

Inducing a food-chain model for Lake Bled

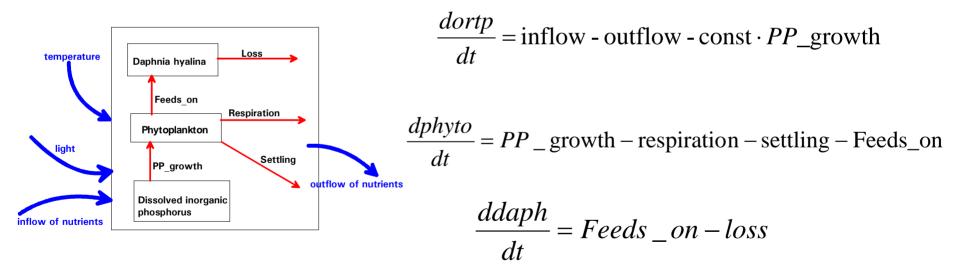
• Data:

- Environmental Agency of the RS
- monthly measurements of physical, chemical and biological data
- Long term data set 1985 to 2002
- Each variable is measured at two locations in the lake (western and eastern basin)
- Samples are taken each two meters from the surface to the bottom
- i.e, we have parameter measurements in two water columns


ARSO: Monitoring kakovosti ...

Measured data (variables) in lake Bled used for model induction

variable name	description	Units	Frequency
q_krivica	Inflow to the lake	m ³ /day	daily
q_misca	Inflow to the lake	m ³ /day	daily
q_radovna	Inflow to the lake	m ³ /day	daily
q_jezernica	Outflow	m ³ /day	daily
q_natega	Outflow	m ³ /day	daily
ortp_krivica, ortp_misca, ortp_radovna	Nutrient (orthophosphate) concentration in the inflows	mg/l	monthly
temp	Water temperature of the streams and lake	°C	monthly
light	Light intensity	J/(m2*day)	monthly
ortp	Nutrient (orthophosphate) concentration in the lake	mg/l	monthly
phyto	Phytoplankton biomass concentration in the lake	mg/l	monthly
daph	Zooplankton (daphnia hyalina) biomass concentration in the lake	mg/l	monthly


Inducing a model on real data

- Three d.e. model: ortp-phyto-daph
- Induced on eastern basin data, euphotic zone (upper 10 m), 1996

Expert knowledge

General form of the equations

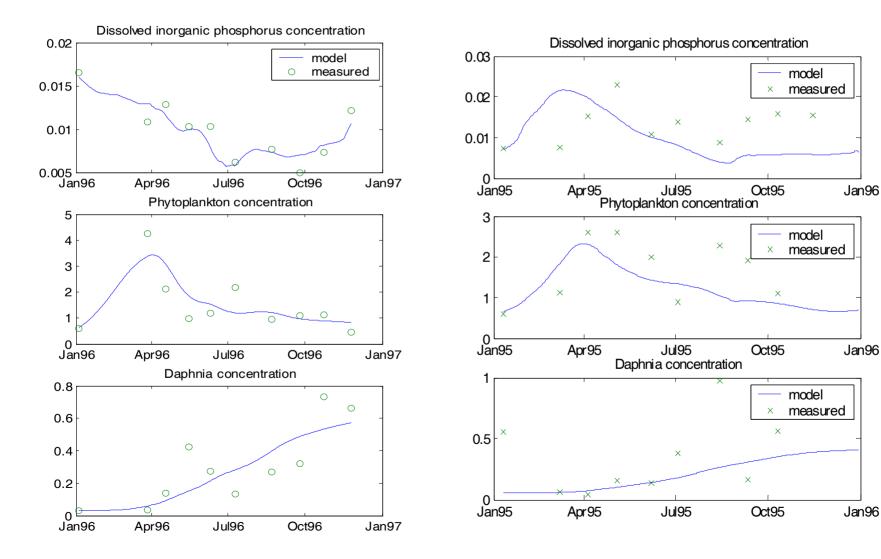
Task specification

variable Inorganic ortp_krivica variable Inorganic ortp_misca variable Inorganic ortp_radovna variable Flow q_krivica variable Flow q_misca variable Flow q_radovna variable Flow q_jezernica variable Flow q_natega variable Inorganic ortp variable Inorganic ortp variable Primary_producer phyto variable Animal daph variable Temperature temp variable Light light process Inflow(ortp, ortp_krivica, q_krivica) inflow1 process Inflow(ortp, ortp_misca, q_misca) inflow2 process Inflow(ortp, ortp_radovna, q_radovna) inflow3

process Outflow(ortp, q_jezernica) outflow1 process Outflow(ortp, q_natega) outflow2 process PP_growth(phyto, {ortp}, {temp}, {light}) p1 process Feeds_on(daph, {phyto}, {temp}) p5 process Loss(phyto, {temp}) p6 process Respiration_PP(phyto, {temp},{}) p9 process Loss(daph, {temp}) p8

Step by step discovery of three d.e.

Phosphorus equation:


$$\frac{dortp}{dt} = (ORTP_krivica \cdot \frac{q_krivica}{7 \cdot 10^6} + ORTP_misca \cdot \frac{q_misca}{7 \cdot 10^6} + ORTP_radovna \cdot \frac{q_radovna}{7 \cdot 10^6})$$
$$-(ORTP \cdot \frac{q_jezernica}{7 \cdot 10^6} + ORTP \cdot \frac{q_natega}{7 \cdot 10^6}) - \cdots + \frac{q_radovna}{7 \cdot 10^6} + \frac{q_radovna}{7 \cdot 10^6}) + \frac{q_radovna}{7 \cdot 10^6} + \frac{q_radovna}{7 \cdot 10^6} + \frac{q_radovna}{7 \cdot 10^6}) - \frac{q_radovna}{7 \cdot 10^6} + \frac{q_radovna}{$$

Using the growth term in the phosphorus eq., discover the rest of the processes in the phytoplankton eq.

$$\frac{dphyto}{dt} = \cdot \cdot \cdot \frac{1}{+} - phyto^{2} \cdot 0.046 \cdot \frac{temp - 2.7}{18 - 4} - phyto \cdot \frac{0.009}{10} - daph \cdot 1.01 \cdot \frac{temp}{20 - 3.5} \cdot \frac{phyto^{2}}{phyto^{2} + 5} \cdot phyto$$

$$\frac{ddaph}{dt} = 0.02 \cdot daph \cdot 1.01 \cdot \frac{temp}{16.4} \cdot \frac{phyto^{2}}{phyto^{2} + 5} \cdot phyto - daph^{3} \cdot \frac{0.001}{5^{2} + daph^{2}}$$

Model performance

Conclusions

- Domain knowledge can be successfuly introduced in the equation (model) discovery procedure
- Lake modelling library to support automated modelling of lakes with the Lagramge 2 machine learning tool was constructed.
- Library language formalism supports a precise formulation of the expert knowledge
- Lake Bled: induction of a simple model for complex dynamics
- Model improvement: increase of model complexity,

Acknowledgements

- Ministry of the Environment, Spatial Planning and Energy; Environmental Agency of the Republic of Slovenia
- Špela Rekar, Environmental Agency of the Republic of Slovenia