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Paleoecological spatio-temporal

count data?

" Paleoecological count data =
“Abundances of organisms”

" Paleoecological temporal count data
= “A time series of paleoecological
count data”

® Spatio-temporal = "There are several
time series in different spatial
locations”



Froportions of taxon abundances
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Segmenting paleoecological data

Ecological Motivation:

® Reduction of data set to manageable
units

" Tdentification of zones of uniform
environmental conditions

® Detection of significant periods of
change

" Tdentification of local vs. regional
(global) changes (multiple data sets)



Segmentation problem in a
nutshell

Find a partitioning of a time series to segments
e Pattern language? Distribution of noise?

For a fixed number segments it is easy to find a
solution

e Use the parameter values that maximize the
score, e.g., the likelihood function.

However, the number of segments is unknown
Ad hoc-methods widely used by paleoecologists.

Segmentation is unsupervised learning in nature,
I.e., beauty is in the eye of the beholder

We choose a Bayesian framework



A Bayesian approach to

segmentation

m | et 7 be a set of time series, m the
number of segments and h(m)
parameters as there is m segments

® Optimal choice is to choose the
number of segments that maximize
the posterior probability

Pr [m] Pr [T\m]

arg max Prim|T| = arg max
m -




Computational/Analytic challenge

" From a computational point of view
the hard part is the marginal
likelihood (h(m) = (c(m),p(m)))

Pr[T|m| = | Pr[T, h(m)|m]dh(m)

= Z — [ Prle(m), p(m)]Pr(T|m, c(m), p(m)]dp(m)

" \We need to integrate over all possible
m-segmentations c(m) and their
parameter values p(m)



Approximating the marginal
ikelihood

= There is no efficient technique to integrate over

all m-segmentations => an approximation is
needed, e.g. BIC

= We propose an ML-MAP apprOX|mat|on

ML-MAP := arg max

“m D! Pllmq PI[T|:‘*[rﬁ ),m/|

= where c*(m) are the maximum likelihood change
points

= We need to integrate still over the segment
specific parameter values p(m)

Pr(T|c*(m),m) = [ Pt[T, p(m)|c*(m), m|dp(m)



[How to compute ML segment
boundaries?

B Suppose the parameters of the segments are
conditionally independent of each other =>
Dynamic programming can be applied (an
extension of Bellman's idea 1961)

= DP algorithm has a quadratic time complexity
w.r.t the number of data points => Heuristic
approximations, e.g., top-down and its
variants, may be needed



A multinomial segmentation
model

B Suppose, for notational simplicity, that there is
only one time series

" et T={y(1),y(2),...,v(n)} be a paleoecological
abundance time series s.t. y(i) is a vector of
organism abundances observed at time point /.

m Segment of T is S={y(i),..., y(i+k)}, where
(i+k<=n and k>=0)

m [t is assumed segments are independent of
each other given zone boundaries, i.e.
e Pr[S,S'|c(m)]=Pr[S|c(m)]Pr[S'|c(m)], where
S and S’ are disjoint segments.



A multinomial segmentation
model: Likelihood

m-segmentation of 7 is a set of m segments
5(1),5(2),...,S(m) s.t. they are non-overlapping
and their union is T

Due to the independence assumption
o PriT|c(m)]=Pr[S(1)|c(m)]*...*Pr[S(m)|c(m)]

The concept of an environmental segment:
Probabilities of organism occurences g(i) are
constants within a segment S(i).

If S(i) is a segment of 7 then for all y € S(i)
* y=(y(1),...,y(K)) ~ Mult(q(i),y(+))

=> Pr[S(i)|c(m)] is a product of multinomials
having the same probability vector q(/)




A multinomial segmentation
model: Priors

= \We assume occurrence probabilities g(/)=(qg
(i,1),...,9(i,k)) at segment / are a priori Dirichlet
distributed
e g(i) ~ Dirichlet(a(i, 1),...,a(i,k))

= \WWe assume a uniform distribution over the
different number of segments => Bayes factors
are equivalent to the posterior odds, i.e.

o P(TIK)/P(TIm) = [P(K)*P(T|K)J/[P(m)*P(T|m)]

= Jf indepence between organisms is assumed use
a binomial or Poisson likelihood.



A multinomial segmentation
model: Marginal likelihood

= The local marginal likelihood can be derived on
the basis of known identities of Dirichlet
integrals

* F’I(b[t},p{a}}ffpu}—

HL T[rzl[; ﬁ .h ) l_h f;[.f A.HT[?L f;[!. A H—r][;. L h.l.
= where y(i k) is the total sum of the occurences of
a taxon k at a segment j

= The total marginal likelihood is a product of the
local marginal likelihoods



A multinomial segmentation
model: ML-MAP

® Using previous identity ML-MAP is available in
linear time and space given the ML change
points c*(m) (space Q(|T|) is required)

/ TAP -— arame
ML-MAP = ._-1.15;11:11“???; F’ [m’]F’I [T|r:*[m ), m’]
= Obs! It is straightforward to extend the model
to take into account a set of time series s.t.
they have different time domains, different
organisms etc.

= => Multiple time series analysis is useful in
identification of local vs. regional (global)
environmental changes




Experiments

= \We carried out experiments with both
simulated and real data

= Why simulated data?

" \WWe generated 100 random instances of the
following time series
e Dimension = 50 such that 5, 10 and 15 segments

e |Length of the time series were 150 data points (a typical
length in paleoecological studies)

e Change points uniformly distributed
e Top-down approximation of ML
Probabilities were generated as

= p[j] := X[1/[X[1]1+...+X[k]], where
X[i] ~ unif(0,1)
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P predictions with Jeffrey's prior
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Summary

m \We represented a probabilistic approach to
paleoecological segmentation task and a
multinomial zonation model.

= ML-MAP is more reliable than BIC when the
number segments is high w.r.t to the length of
time series

= Obs! Full details (and much more) are available in

e “"Computational methods and models for paleoecology” by Kari

VVasko, PhD Thesis (Chapter 7). The thesis is available in pdf-
format at web

o http://ethesis.helsinki.fi/julkaisut/mat/tieto/vk/vasko
e A hard copy is available by request



