Using multiobjective classification to model communities of soil microarthropods

> Damjan Demšar¹, Sašo Džeroski¹, Paul Henning Krogh², Thomas Larsen²

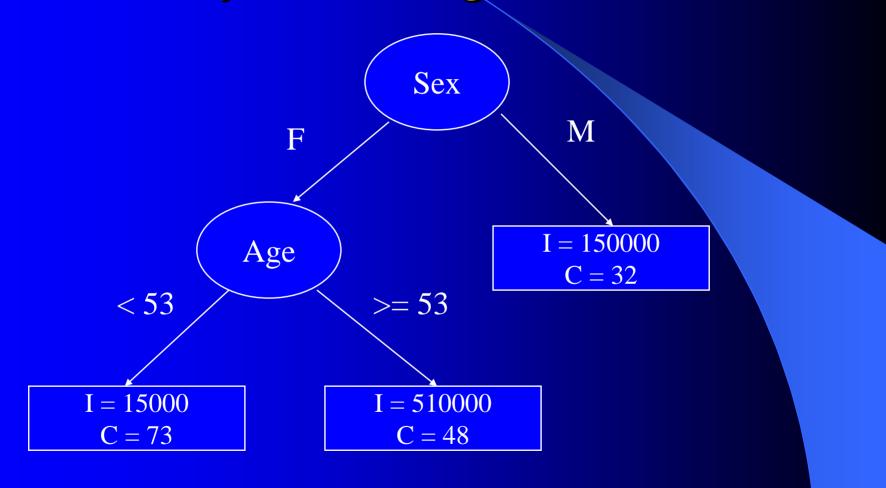
 ¹ Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia,
 ² Department of Terrestrial Ecology, National Environmental Research Institute, Roskilde, Denmark

outline

multiobjective classification
motivation
datasets
results
conclusions

multiobjective classification

- use one model to classify several target variables
- can be used to indentify differences between target variables


we used CLUS

multiobjective regression tree

ECOGEN: Soil ecological and economic evaluation of genetically modified crops oobjectives

- ecological and economical assessment and comparison of integrated farming systems using genetically modified higher plants with a conventional farming system.
- provide an ecological risk assessment of a GM cropping system and a conventional cropping system for the soil ecosystem.
- economic assessment of GM plant crops and conventional crops with respect to a quantification of the expected trade-offs between the two.
- incorporate ecological knowledge from single species tests, multispecies tests, field investigations and economic information from farming practices into a rule based model to be used for predictions of economic decision-making processes and ecosystem behaviour.

ECOGEN WP6: data analysis and decision support

objective:

build an integrated rule-based model for assessing the sustainability of farming taking into account ecology and economy

the model would be used for decision support to choose a suitable farming system

motivation

extract new knowledge from the data

- extract old knowledge from the experts (use the models to construct questions for the experts)
 - identify the most important factors for the community of soil microarthropods
 - identify and try to explain the different reactions of different parts of the community

- foulum dataset
 - 4 experimental farming systems
 - conventional and organic
 - <mark>– 1989-1993</mark>
 - 530 samples
- nk2 dataset
 - several organic farms
 - 2002 and 2003
 - 800 samples (430 from 2002, 370 from 2003)
- total of 1330 samples, 1138 without missing data

agricultural measures

(packing, tillage, fertilizer and pesticide use)

- history of crops and grazing for the last 3 years
- environmental variables
- dependant (class) variables
 - biodiversity index (H)
 - total number of mites (acari)
 - total number of springtails (coll)
 - 45 different species / groups

$$H = \sum_{i=1}^{n} p_i * \log_2(p_i)$$

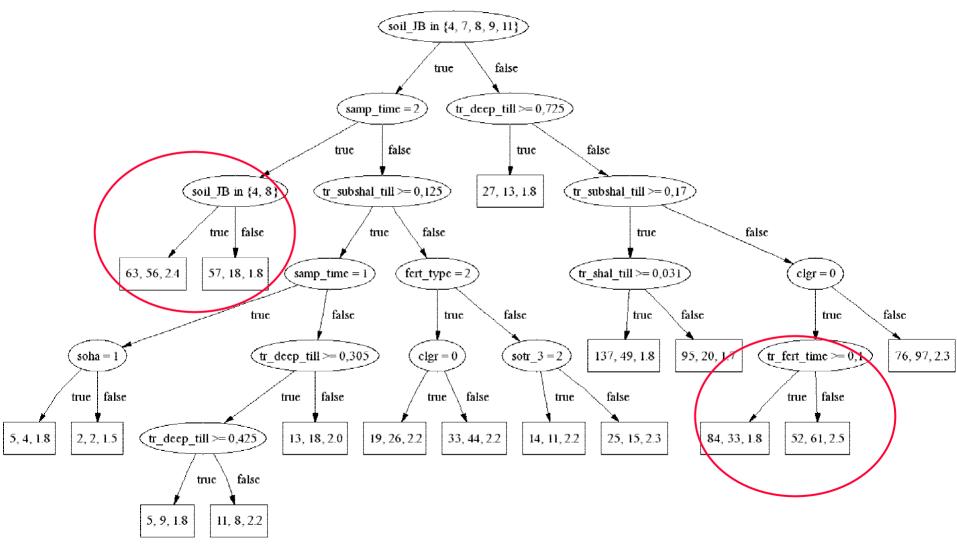
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Attribute	Explanation	Attribu te	Explanation	Attribute	Explanation
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	soil_JB		rd	radish	-	using: <u>months – 10</u>
	-	2 = May - June, 3 = July - August, 4 = September -	ry	гуе		0-5 cm layer (months since) transformed using: $(months - 10)^4$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ba	winter barley	sba	spring barley	_	layer (months since) transformed using $\left(\frac{months - 10}{2}\right)^2$
cccatch cropsisilage/hayfert_typeno=0, solid=1, liquid=2chchicoryswhspring wheatfert_timefertilizaton time (mo)chgrchicory+grasstctriticalecrop_1crop prev yearclgrclover+grasswhwinter wheatca_1no cattle=0, cattle=1fafallowwcwhole cropsotr_1no treat=0, s or a=1, s and a=2grgrassoseed bed (<1 mo)	be	beets/carrots	sf	stubble field		cm layer (months since) transformed using $\left(\frac{months - 10}{2}\right)^2$
chchicoryswhspring wheatfert_timefertilizaton time (mo)chgrchicory+grasstctriticalecrop_1crop prev yearclgrclover+grasswhwinter wheatca_1no cattle=0, cattle=1fafallowwcwhole cropsotr_1no treat=0, s or a=1, s and a=2grgrassoseed bed (<1 mo)	ca	cattle	sh	sheep	fert_lev	low=0, normal=1, high=2.
chgrchicory+grasstctriticalecrop_1crop prev yearclgrclover+grasswhwinter wheatca_1no cattle=0, cattle=1fafallowwcwhole cropsotr_1no treat=0, s or a=1, s and a=2grgrassoseed bed (<1 mo)	сс	catch crop	si	silage/hay	fert_type	no=0, solid=1, liquid=2
clgrclover+grasswhwinter wheatca_1no cattle=0, cattle=1fafallowwcwhole cropsotr_1no treat=0, s or a=1, s and a=2grgrassoseed bed (<1 mo)	ch	chicory	swh	spring wheat	fert_time	fertilizaton time (mo)
fafallowwcwhole cropsotr_1no treat=0, s or a=1, s and a=2grgrassoseed bed (<1 mo)	chgr	chicory+grass	tc	triticale	crop_1	crop prev year
grgrassoseed bed (<1 mo)crop_2crop prev 2nd yearleleekssehaseed bed harrowedca_2no cattle=0, cattle=1lulupinseplseed bed plowedsotr_2no treat=0, s or a=1, s and a=2oaoatessohasoil treatment harrowedcrop_3crop prev 3rd yearpepeassoplsoil treatment plowedca_3no cattle=0, cattle=1popotatoespesticid epesticide. 1=fields in a rotation where pesticides are used. 0=no pesticidesotr_3no treat=0, s or a=1, s and a=2	clgr	clover+grass	wh	winter wheat	ca_1	no cattle=0, cattle=1
leleekssehaseed bed harrowedca_2no cattle=0, cattle=1lulupinseplseed bed plowedsotr_2no treat=0, s or a=1, s and a=2oaoatessohasoil treatment harrowedcrop_3crop prev 3rd yearpepeassoplsoil treatment plowedca_3no cattle=0, cattle=1popotatoespesticid1=fields in a rotation where pesticides are used. 0=no pesticidesotr_3no treat=0, s or a=1, s and a=2	fa	fallow	wc	whole crop		no treat=0, s or a=1, s and a=2
lulupinseplseed bed plowedsotr_2no treat=0, s or a=1, s and a=2oaoatessohasoil treatment harrowedcrop_3crop prev 3rd yearpepeassoplsoil treatment plowedca_3no cattle=0, cattle=1popotatoespesticid epesticides are used. 0=no pesticidesotr_3no treat=0, s or a=1, s and a=2	gr	grass	0	seed bed (<1 mo)	crop_2	crop prev 2nd year
oa oates soha soil treatment harrowed crop_3 crop prev 3rd year pe peas sopl soil treatment plowed ca_3 no cattle=0, cattle=1 po potatoes pesticid e pesticides are used. 0=no pesticide sotr_3 no treat=0, s or a=1, s and a=2	le	leeks	seha	seed bed harrowed	ca_2	no cattle=0, cattle=1
oa oates soha harrowed crop_3 crop prev 3rd year pe peas sopl soil treatment plowed ca_3 no cattle=0, cattle=1 po potatoes pesticid rotation where sotr_3 no treat=0, s or a=1, s and a=2	lu	lupin	sepl	seed bed plowed	sotr_2	no treat=0, s or a=1, s and a=2
popotatoespesticid epesticide. 1=fields in a rotation where pesticides are used. 0=no pesticidesotr_3no treat=0, s or a=1, s and a=2	oa	oates	soha		crop_3	crop prev 3rd year
poposticidrotation where pesticides are used. 0=no pesticidesotr_3no treat=0, s or a=1, s and a=2	pe	peas	sopl	soil treatment plowed	ca_3	no cattle=0, cattle=1
ra rape	ро	potatoes	-	rotation where pesticides are used.	sotr_3	no treat=0, s or a=1, s and a=2
	ra	rape				

Abbreviation	Species	Abbreviation	Species
Iang ²	Isotoma anglicana	Apygm ²	Anurida pygmaea
Ipalu ²	Isotomurus palustris	Iminor ²	Isotomiella minor
Hdent ²	Ceratophysella denticulata	Hniti ²	Heteromurus nitidus
Hsuc ²	Ceratophysella succinea	Tquad ²	Stenaphorura quadrispina
Xarma ²	Hypogastrua sp.	Nmini ²	Neelus minimus
Llanu ²	Lepidocyrtus lanunginosus	Saure ²	Sminthurinus aureus
Lcyan ²	Lepidocyrtus cyaneus	Fspino ²	Folsomia spinosa
Seleg ²	Sminthurinus elegans	Cterm ²	Cryptopygus thermophilus
Onych ²	Protaphorura sp.	Will ²	Willemia sp.
Sviri ²	Sminthurus viridis	Ocinct ²	Orchesella cincta
Sminsp ²	Smint. Sp.	Owillo ²	Orchesella villosa
Crypt ¹	Cryptostigmata (Oribatida mite)	Nmusco ²	Neanura
Prost ¹	Prostigmata (Actinedida mite)	Psexoc ²	Pseudosinella sexoculata
Tull ²	Mesaphorura sp.	Iprod ²	Isotomodes productus
Inot ²	Isotoma notabilis	Iarma ²	Isotomodes armata
Entosp ²	Entomobrya sp.	IBiset ²	Isotomodes bistosus
Fmirab ²	Friesea mirabilis	Fquad ²	Folsomia quadrioculata
Ast ¹	Astigmata (Acaridida mite)	Icilia ²	Isotomurus sp.
Meso ¹	Mesostigmata (Gamasida mite)	Tomosp ²	Tomoserus sp.
Ffim ²	Folsomia fimetaria	Tflav ²	Tomocerus flavescens
Palba ²	Pseudosinella alba	Tminor ²	Tomocerus minor
Bparv ²	Brachystomelle parvula	Apygm ²	Anurida pygmaea

²collembola

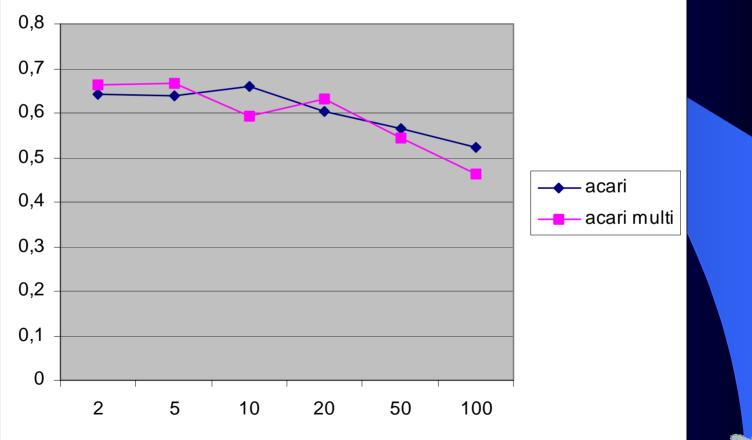
multiobjective models

- used tool CLUS to predict several measures at once
- compared the accuracies with CLUS prediction of single measure
- acari / coll / biodiversity
- all species / groups (not yet evaluated)

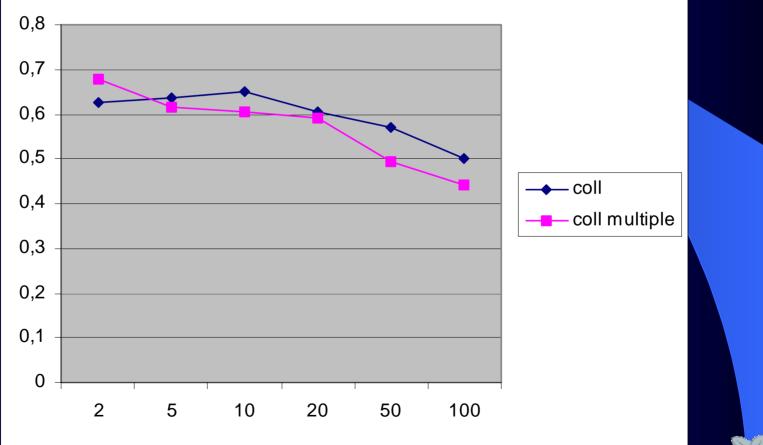


Multiobjective model

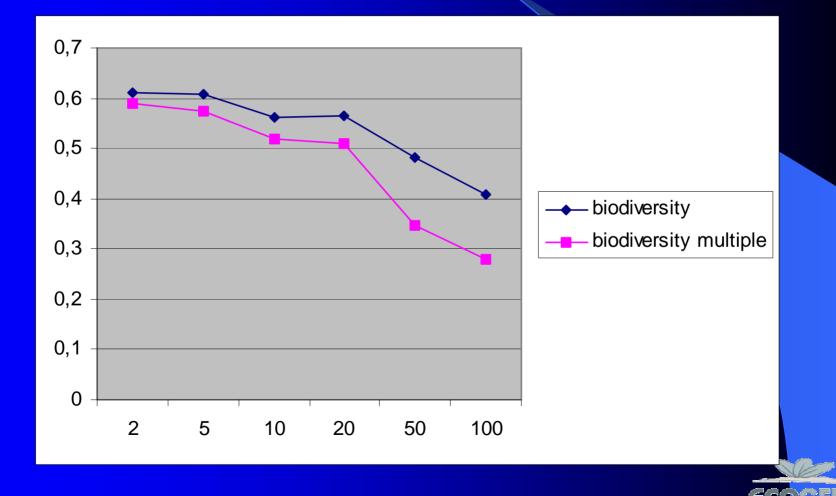
```
soil_JB in {11,4,7,8,9}
+--yes: samp time = 2
    +--ves: soil JB in {4.8}
         +--yes: [63227,575756 high mid ,56446,909174 high mid ,2,478269 high] : 81
         +--no: [57453,801291 high mid ,18890,521352 low mid ,1,890191 mid] : 76
    +--no: tr subshal till \geq 0.125
         +--yes: samp time = 1
              +--yes: soha = 1
                   +--yes: [5873,925643 low ,4511,21425 low ,1,816766 mid] : 56
                   +--no: [2469,428036 low ,2519,517855 low ,1,573708 low] : 55
              +--no: tr deep till >= 0.305
                   +--ves: tr deep till \geq 0.425
                        +--yes: [5620,645629 low ,9139,584454 low ,1,851626 mid] : 97
                        +--no: [11061,344 low ,8914,57 low ,2,200479 high] : 53
                   +--no: [13437,061506 low ,18326,515227 low mid ,2,047582 high mid] : 80
         +--no: fert type = 2
              +--ves: clar = 0
                   +--yes: [19412,214744 low ,26461,953533 low mid ,2,215455 high] : 92
                   +--no: [33046,814499 low mid ,44941,613306 mid ,2,207047 high] : 58
              +--no: sotr 3 = 2
                   +--yes: [14888,327633 low ,11274,965902 low ,2,234485 high] : 54
                   +--no: [25493,512971 low mid ,15037,699693 low mid ,2,351412 high] : 74
+--no: tr deep till >= 0,725
    +--yes: [27857,687196 low mid ,13808,983475 low ,1,868849 mid] : 66
    +--no: tr subshal till \geq 0.17
         +--yes: tr shal till \geq 0.031
              +--yes: [137373,820398 HIGH ,49045,906321 high mid ,1,840351 mid] : 50
              +--no: [95526,267516 high .20688,654538 low mid .1,783139 low mid] : 52
         +--no: clar = 0
              +--yes: tr fert time \geq 0,1
                   +--yes: [84701,949268 high ,33120,80018 mid ,1,820153 mid] : 56
                   +--no: [52483,917114 mid ,61587,456419 high ,2,536311 HIGH] : 60
              +--no: [76746,840473 high mid ,97745,781348 HIGH ,2,385857 high] : 78
```



Multiobjective model

acari in 1000, coll in 1000, biodiversity



multiobjective model acari correlation


EGOGEN

multiobjective model coll correlation

ECOGEN

multiobjective model biodiversity correlation

multiobjective model findings

- acari and coll abundances depend most on soil type (worst are 7 9 11), while biodiversity is independent of the soil type
- subshallow tillage has longest big negative effect on biodiversity, while acari and coll abundancies are not as highly effected
- recent deep tillage has big negative effect on accari and medium negative effect on coll and biodiversity
- (not so recent) subshallow tillage (with no recent deep tillage) has positive effect on acari, small negative effect on coll and medium to big negative effect on biodiversity
- recent fertilization has positive effect on acari, while it has negative effect on coll and biodiversity

conclusions

- only slight or even no performance loss when using multiobjective models
- can be used to identify the factors important for the whole community, not just one part
- simple identification of different reactions to (agricultural) actions
- 1 multiobjective model is simpler than several single objective models

to do

- experts evaluation of acari/coll/biodiv multiobjective model
- evaluation of multiobjective species model
- using single species models to predict compound measures

thank you

