Modeling fish migration path in a river based on its environmental preference

Masahiko SEKINE Yamaguchi University, Civil Engineering 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, JAPAN TEL: +81(836)85-9311 FAX: +81(836)85-9301 ms@env.civil.yamaguchi-u.ac.jp Moriyoshi WATANABE Akashi National College of Technology , Masao UKITA, Tsuyoshi IMAI, Takaya HIGUCHI Yamaguchi University

Fish Food Web Model in 1990s

Field and Lab. Work with Simple preference model (current)

for river restoration and channel design

Fifth International Symposium on Ecohydraulics Aquatic Habitats: Analysis & Restoration September 12-17, 2004, Madrid, Spain

Definition of Dr. Leroy Poff, CSU

Hydro-Ecologist

Holist

Eco-Hydrologist

IAHR

Reductionist

Decision maker

(Above figures are taken from Midcontinent Ecological Science Center Home Page as an example.)

Our former research on fish preference model (1)

Traditional model cannot explain the fish distribution under combined condition.

Additional two strong points of our model

- The preference curve and weight value for each environmental factor can be determined separately.
- 2. The environmental factors can be added anytime without affecting other preference curves and weights.

Our former research on fish preference model (2)

Time

Figure 3. Fluctuation of distribution ratio in the high velocity tank.

Fig. 5. Sensible Weight and Sensible Distance.

Our former research on fish preference model (3)

Now our model can explain fish distribution in rivers quite well!

PURPOSE

- We have already been able to evaluate fish distribution in "moderate reach" based on its preference.
- The purpose of this research is to evaluate continuity of rivers for migratory fish by constructing a preference model for "barrier reach", which has rapid velocity and/or high gap of water level.

Examples of barrier reach

swimming

derate reach

In barrier reach, turbulence, bubble, and velocity play important roles.

Sustained swimming section

- In sustained swimming section, fish can swim with sustained swimming speed.
- In gap section, fish need to swim with burst swimming speed or even need to jump.

METHOD

- Decide fish preference models for turbulence, bubble, and velocity based on Lab. tests.
- 2. Construct model equations for sustained swimming section and gap section.
- 3. Conduct field surveys to obtain field data of turbulence, bubble and velocity together with counting migratory fish in barrier reaches.
- 4. Explain fish migratory paths and fish counts by using the model.

Preference for velocity

Preference in sustained swimming section

Preference in gap section

Field observation of ascending fish

Fishway Type	Туре А		Туре В	
Water volume of one pool (L)	300		650	
Gap of water level between pools (cm)	17		10	
Pool number (-)	8		19	
Total length of the fishway (m)	12		50	
Slope (-)	-1/3 1/9		1/33	
Date	7-8 Aug. 2002	12-14 Apr. 2003	7-8 Aug. 2002	12-14 Apr. 2003
Flow rate (m3/sec)	0.018	0.065	0.08	0.009
Water temperature (°C)	27.5	14	27.5	14.3
Captured fish at the upper end (capita per day)	38	30	26	0

An example of preference pattern in fishway A

CONCLUSION

- The preference model seems successfully explain the ascending fish number.
- The model could be used to evaluate continuity of rivers.

I could advice our sponsor (concrete block maker) not to construct too comfortable fishway for fish sake.

REMAINING QUESTION

- Preference model in gap section is based on literatures and still not quantitative.
- Preference values of gap section and sustained swimming section are still not comparable.

Decision maker

