Modelling ecological absence-presence data along an environmental gradient: threshold levels of the environment

Christian Damgaard Department of Terrestrial Ecology NERI, Denmark

Absence-presence data along an environmental gradient

Often ecological data is collected as absence-presence data at a specific site.

If the sites are distributed along an environmental gradient, the data may be used to generate hypotheses of community dynamic processes.

Modelling the probability of being present as a function of an environmental gradient.

niche widths

shape of the species response

applied ecology: threshold levels

Modelling approach

Model selection among three complementary models using the Bayesian Information Criterion (BIC)

- independence, monotonic or optimum
- the assumption of complementarity assures relevance of the BIC

Estimating possible threshold levels of the environment Bayesian posterior distribution

Metropolis - Hastings algorithm

Modified sigmoid function

$$f(x; a, d, b, x_0) = \frac{(a-d) + \exp(-b x_0)}{1 + \exp(b (x - x_0))} + d$$

f(*x*) is the probability of occurrence as a function of the environment

 $x \ge 0; \quad a \in [0, 1], d \in [0, 1], b \in [0, \infty]$

 x_0 is the threshold level of the environment the range of f(x) is [0, 1]

Model selection

Using the modified sigmoid function the three complementary models were described. independence - f(x) = cmonotonic - increasing or decreasing optimum - $f_{increasing}(x) * f_{decreasing}(x)$ **BIC - number of free parameters?** actual number of parameters subjective assessment based on the sampled covariance deviance of the MCMC sample (Spiegelhalter et al., 2002)

Bauera rubioides along an elevation gradient

(Oksanen & Minchin, 2002)

independence monotonic optimum

Model selection - Bauera rubioides

	Independence		Monotonic		Optimum	
Maximum log-likelihood value	-107.842		-70.197		-68.759	
	p 1	P(<i>M1</i>)	p 2	P(<i>M2</i>)	p_3	P(<i>M3</i>)
without adjustment of p_i	1	<0.0001	5	0.97	7	0.03
adjustment of <i>p_i</i> using observations on the covariance	1	<0.0001	ca. 4	0.75	ca. 5	0.25
adjustment of <i>p_i</i> using the deviance of the MCMC sample	0.96	<0.0001	3.2	0.24	3.3	0.76

Threshold of Bauera rubioides

(Oksanen & Minchin, 2002)

Conclusions

Model selection depends critically on the assumed number of free parameters

- Posterior distributions of environmental threshold levels may be obtained
- Knowledge on threshold levels may be useful in applied ecological cases

management of natural habitats