Fourth European Conference on Ecological Modelling
September 29 – October 1 2004, Bled, Slovenia

MOOVES, an individual-based model to study the functioning of a tropical marine ecosystem and its reaction to fishing pressure

Audrey COLOMB, Yunne SHIN, Jean LE FUR and Didier GASCUEL

Context

- Ecosystem Approach to Fisheries (FAO, 2003)
 - Not only commercial species in monospecific assessment
 - But interacting species & their environment
- European project « Ecological Fishing in Guinea »

Exploratory approach with a knowledge-based ecosystem model fish-oriented

Outline

- Overview of the model:
 - Description
 - Quick display
- Disturbance in this study:
 - Elementary fishing scenarios
 - Tools to investigate their effects
- First results:
 - Do simulated indicators follow reference direction?
 - What does that mean?
- Prospect: a study of response curves

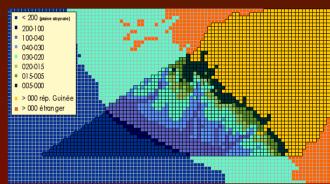
Introduction

Which ecosystem?

- Guinean coastal system
- Mainly demersal community (the « Sciaenids »)
- Old industrial fishery / recent small-scale fishery

Why a simulator?

- To analyse the properties of a neritic tropical system from the representation of the processes
 - observed at the individual / populational scale
 - that seemed important to represent the system functioning in a fishing pressure context
- To simulate fishing scenarios and investigate the reaction of the system

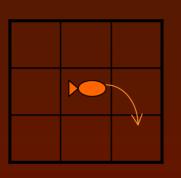


The simulator

MOOVES

Marine Object-Oriented Virtual Ecosystem Simulator

- Individual-based model (IBM)
- Spatially-explicit
- 4 living compartments:
 plankton, detritus, benthos, other macroorganisms
- « Bio-functional groups »
- Whole life cycle of fish

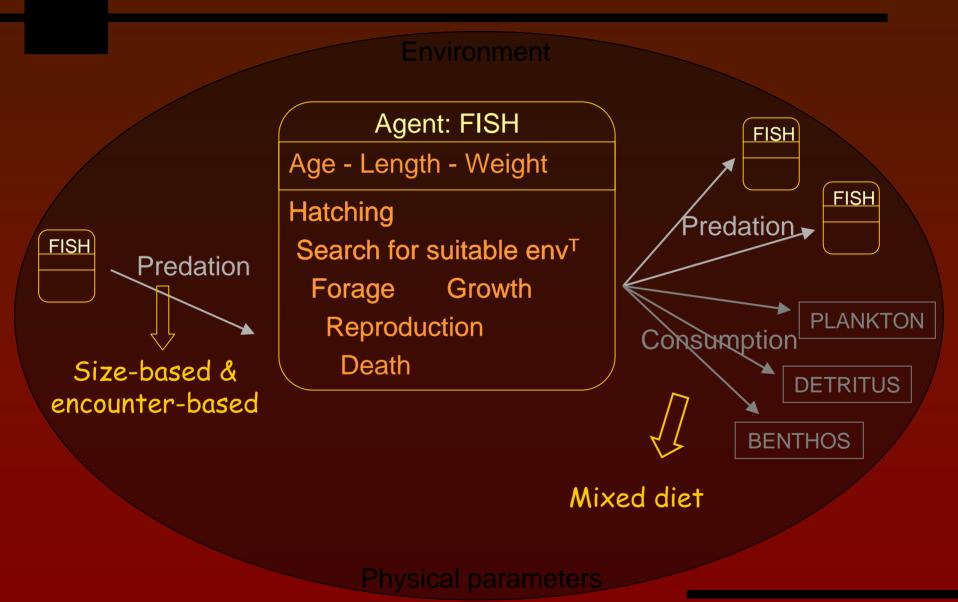


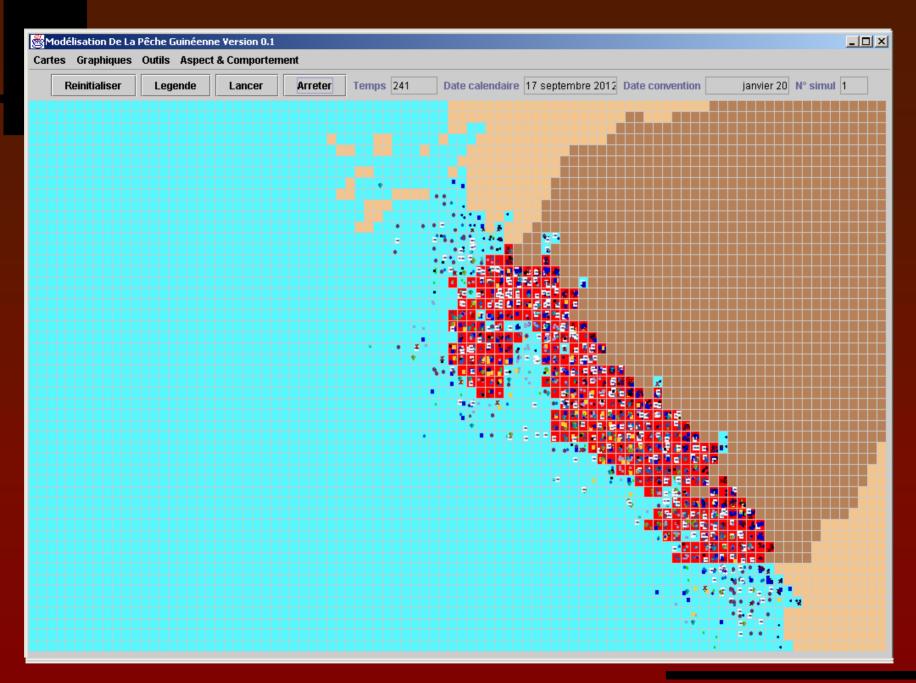
The simulator: Life processes of fish

Search for suitable environment: the moving process

The agent moves to the cell with Max(Final I_c)

Suitable habitat


Abiotic $I_c = \Pi$ HSI(physical parameters)



Final attraction index

Final $I_c = [Abiotic I_c] S$. Trophic I_c

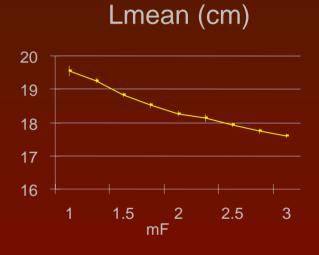
The simulator: Life processes of fish

Simulated scenarios

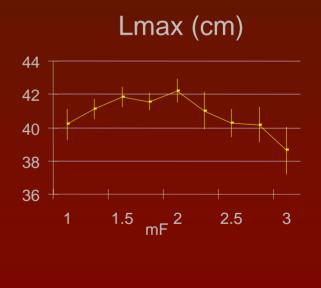
How fishing process is modeled?

- Fishing is a mortality rate
- applied on all bio-functional groups
- on all individuals larger than a minimum catch length (19cm)

The fishing scenarios:


- Fref = 0.4
- Various simulations, with mF ranging from 1 to 3, with 0.25 step
- 10 replicates for each scenario

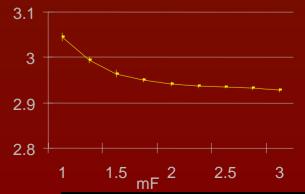
Followed community indicators


	Indicator	Formula	Expresses changes in:
Size- based	Lmean	Σ L/N	 the mean fish size of populations the relative abundance of large and small species
	Lmax	$\Sigma(\text{Linf}_i * N_i) / \Sigma N_i$	 the relative abundance of large and small species
	Size- spectrum curvature	N by 10-cm size intervals in log scale + quadratic fit	the relative abundance of large and small fish
Tropho- dynamics	TLmean	Σ TL / N	• the diets of fish

Indicator	Previous theory / empirical reference direction	Model
Lmean	(Rochet & Trenkel 2003)	Ľ
Lmax	(Jennings et al. 1999)	7/
SS curv.	\(\) (Shin & Cury 2004)	Z
TLmean	(Pauly et al. 2000)	7

Indicator	Previous theory / empirical reference direction	Model
Lmean	(Rochet & Trenkel 2003)	K
Lmax	(Jennings et al. 1999)	7/
SS curv.	(Shin & Cury 2004)	7
TLmean	(Pauly et al. 2000)	7

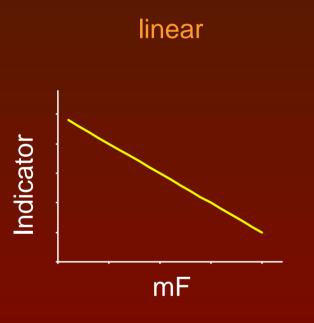
Indicator	Previous theory / empirical reference direction	Model
Lmean	(Rochet & Trenkel 2003)	K
Lmax	(Jennings et al. 1999)	7/
SS curv.	\(\) (Shin & Cury 2004)	Z
TLmean	(Pauly et al. 2000)	7

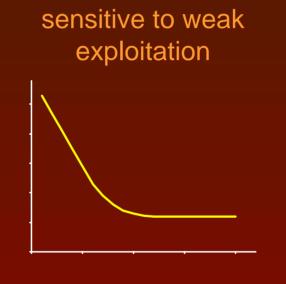

Indicator	Previous theory / empirical reference direction	Model
Lmean	(Rochet & Trenkel 2003)	7
Lmax	(Jennings et al. 1999)	77
SS curv.	(Shin & Cury 2004)	7
TLmean	(Pauly et al. 2000)	7

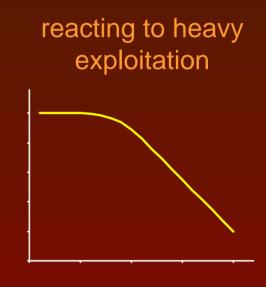
Size-spectrum curvature

Indicator	Previous theory / empirical reference direction	Model
Lmean	(Rochet & Trenkel 2003)	7
Lmax	(Jennings et al. 1999)	77
SS curv.	\(\) (Shin & Cury 2004)	7
TLmean	(Pauly et al. 2000)	7

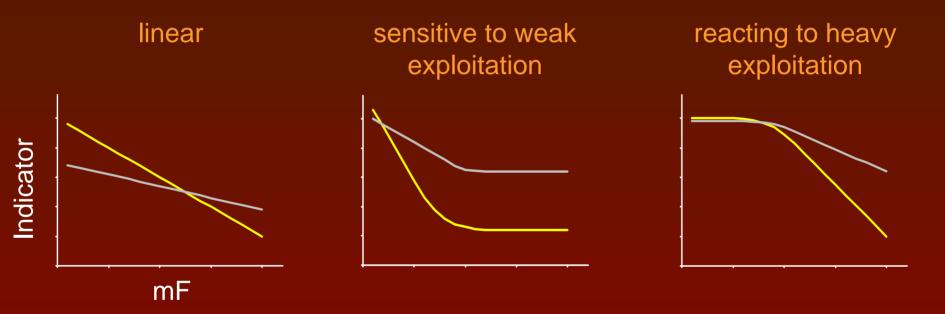
TLmean




Results: meaning


- Fishing pressure resulted in:
 - a decrease of larger fish compared to small fish
 - and particularly at the species scale
 - but not necessary a decrease of large species
 - a decrease of ichtyophageous abundance
 « Fishing down marine food webs »

Advantage of the approach: accessing all the information for a scenario, and not empirical results from various surveys.


Various types of response to fishing pressure appear:

Various types of response to fishing pressure appear:

Responses may differ by their amplitude

	Type of response	Amplitude
Size-based		
Lmean	linear	high
Lmax	no ref. direction	low
SS curvature	strong pressure	very high
<u>Trophodynamic</u>		
TLmean	light exploitation	low

low: 1-5%

high: 5-15%

very high: + 15%

	Type of response	Amplitude
Size-based		
Lmean	linear	high
Lmax	no ref. direction	low
SS curvature	strong pressure	very high
<u>Trophodynamic</u>		
TLmean	light exploitation	low

Reliable whatever the pressure is

Strong reaction

Ideal indicator for sensitivity and amplitude criteria

	Type of response	Amplitude
Size-based		
Lmean	linear	high
Lmax	no ref. direction	low
SS curvature	strong pressure	very high
<u>Trophodynamic</u>		
TLmean	light exploitation	low

Not valid

	Type of response	Amplitude
Size-based		
Lmean	linear	high
Lmax	no ref. direction	low
(SS curvature)	strong pressure	very high
<u>Trophodynamic</u>		
TLmean	light exploitation	low

For heavy exploitation

+
Strong reaction

	Type of response	Amplitude
Size-based		
Lmean	linear	high
Lmax	no ref. direction	low
SS curvature	strong pressure	very high
<u>Trophodynamic</u>		
TLmean	light exploitation	low

For developing exploitation (...!)

or
low intensive fisheries

or
tracking fisheries
history...

Conclusion

- The simulations point out the response of the system to fishing pressure
 - The directions match the theory and previous studies on demersal assemblages
 - and this approach precises some *response curves* (the linear response is particularly interesting)
- Theoretical advantage: by modelling the individuals, a huge amount of information is reachable (but do not drop the string!) so various types of data are available for the same « study »
- Perspectives...
 - Strong validation
 - What happens below the community level?
 - Environmental processes

