Indirect Effects and Distributed Control in Ecosystems

5. Distributed Control in the Environ Networks of a Seven-Compartment Model of Nitrogen Flow in the Neuse River Estuary, USA: Steady-State Analysis

J. R. Schramski, D.K. Gattie, B.C. Patten, S.J. Whipple, S.R. Borrett, and B.D. Fath

> Institute of Ecology University of Georgia September 30, 2004

Objectives

Introduction

- Review the "Control Matrix" of a cold water spring energy model
- Applicability to the Neuse River Estuary nitrogen model

Methods

- Consider pair-wise relations between two components in a network
- Control theory and equation development

Results

- Control Ratio, cr_{ii}
- Control Difference, cd_{ii}
- System Control, cs_i

Conclusions

	0	-0.1	-3.3	0.1	2.8	0.2	-0.8
CR×10=	0.1	0	-2.9	0.4	2.4	2	-0.7
	3.3	2.9	0	3.3	4.4	2.9	3.4
	-0.1	-0.4	-3.3	0	2.4	-0.3	-1.1
	-2.8	-2.4	-4.4	-2.4	0	-2.1	-2.8
	-0.2	0.2	-2.9	0.3	2.1	0	-0.5
	0.8	0.7	-3.4	1.1	2.8	0.5	0

	0	-0.2	-4.1	0.2	3.6	0.3	-1.0]		
	0.2	0	-3.6	0.4	3.0	-0.3	-0.9		- 1.2
	4.1	3.6	0	3.9	5.5	3.6	4.4		25.2
CD×10=	-0.2	-0.4	-3.9	0	2.9	-0.3	-1.3	$cs_i \times 10 =$	- 3.2
	-3.6	-3.0	-5.5	-2.9	0	-2.6	-3.5		- 21.2
	-0.3	0.3	-3.6	0.3	2.6	0	-0.7		– 1.3
	1.0	0.9	-4.4	1.3	3.5	0.7	0		3.0

Introduction (1)

Steady-state energy flow model of a cold water spring ecosystem (Patten et al. 1976)

	H ₁	H_2	H ₃	H ₄	H_5
H ₁	1.00/1.00	0.00/0.93	0.00/0.93	0.00/0.93	0.00/0.93
	1 → 0	0 → 1	0 → 1	0 → 1	0 → 1
H ₂	0.96/0.00	1.21/1.21	0.37/1.21	0.19/1.21	0.54/1 21
	∞ → 0	1 → 0	0.31 → 0.69	0.15 → 0.85	0.45 - 0.55
H ₃	0.43/0.00	0.56/0.17	1.17/1.17	0.08/0.20	0.25/0.20
	∞ → 0	3.34 → 0	1 → 0	0.42 → 0.58	1.29 → <mark>0</mark>
H ₄	0.20/0.00	0.25/0.04	0.09/0.40	1.04/1.04	0.11/1.04
	∞ → 0	6.44 → 0	2.36 → 0	1 → 0	0.11 → 0.89
H_5	0.03/0.00	0.03/0.02	0.01/0.20	0.16/0.02	1.02/1.02
	∞ → 0	2.17 → 0	0.78 – 0.22	8.94 → 0	1 → 0

where N and N' are the transitive closure matrices

(Patten and Auble 1981)

Control Matrix, format for entries is: n_{ij}/n'_{ji}

Introduction (2)

Introduction (3)

Methods (1)

Pair-wise environ relations

it Co

Methods (2)

Powers of the Adjacency Matrix, A^m, quantifies number of pathways between components

Example: Quantity of paths of length, m = 3, between H_1 and H_3

8 Pathways from H_1 forward to H_3

3 Pathways from H₁ back to H₃

$$a_{ij}^{(m)} \neq a_{ij}^{T(m)}$$
 m = pathway length = 1, 2,..., ∞

Methods (4)

Fractional Transfer Coefficient, η

$$\eta_{ij} = \left[\frac{n_{ij}}{T_i^{out}} \times z_j\right] = \left[y_i \times \frac{n'_{ij}}{T_j^{in}}\right]$$

when
$$z_j = y_i = 1$$

$$\eta_{ji} = \left[y_j \times \frac{n'_{ji}}{T_i^{in}} \right] = \left[\frac{n_{ji}}{T_j^{out}} \times z_i \right]$$

when
$$z_i = y_j = 1$$

Control Ratio
$$CR = C$$

$$CR = cr_{ij} = \frac{\eta_{ij} - \eta_{ji}}{max (\eta_{ii}, \eta_{ii})}$$

Control Difference

$$CD=cd_{ij}=\eta_{ij}-\eta_{ji}$$

System Control vector

$$cs_i = \sum_{k=1}^{n} cd_{ik}$$

n = number of system components

Results (1)

Control Ratio

	1.36	1.26	0.85	1.24	1.29	1.30	1.15			0	-0.01	-0.33	0.01	0.28	0.02	-0.08
	1.28	1.34	0.88	1.25	1.28	1.30	1.22		CR =	0.01	0	-0.29	0.04	0.24	-0.02	-0.07
	1.26	1.24	1.63	1.19	1.26	1.25	1.31			0.33	0.29	0	0.33	0.44	0.29	0.34
η×1000 =	1.23	1.21	0.80	1.53	1.19	1.21	1.10	CF		-0.01	-0.04	-0.33	0	0.24	-0.03	11
	0.93	0.97	0.71	0.91	1.56	1.00	0.90			-0.28	-0.24	-0.44	-0.24	0	-0.21	-0.28
	1.27	1.33	0.89	1.24	1.27	1.38	1.21			-0.02	0.02	-0.29	0.03	0.21	0	-0.05
	1.26	1.32	0.87	1.23	1.25	1.28	1.67			0.08	0.07	-0.34	0.11	0.28	0.05	0

Results (2)

Control Difference, CD

System Control, cs_i

$$cs_{j} \times 10 = \begin{bmatrix} -1.3 \\ -1.2 \\ 25.2 \\ -3.2 \\ -21.2 \\ -1.3 \\ 3.0 \end{bmatrix}$$

Results (3)

Conclusions

- N and N' represent an augmentation or attenuation of system boundary flows, i. e., T^{out} = Nz and Tⁱⁿ = yN'
- η represents a throughflow normalized and boundary value scaled (z = y = 1) metric of N and N'
- Comparative metrics CR, CD, and cs offer quantitative values for pair-wise dominance relationships in networks
- Nitrates-Nitrites and Sediment are at opposite ends of the environ control spectrum in the nitrogen model of the Neuse River Estuary: USA
- Currently assessing the influence of throughflow magnitude, component storage, and resident times on results

