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Secondary Extinction ""__k .

Because of complex relations between species in
ecosystems, a single extinction event could
precipitate into cascading extinction (secondary
extinction) of other species.

This is an important issue for conservation biology
and has been approached using various techniques.
Depending on the modeling context, one can
evaluate different aspects of the problem.
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Secondary extinction: lack of ==,-——{ .
nutrients /S

xﬂredatnr

When all prey of a given
predator go extinct, the
predator will starve as

well. rey A rey B
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Secondary extinction: lack of ==,-——{ .
control /S

xﬂredatnr

The extinction of a top
predator could enhance
competition between

prey, leading to extinction
of one or more of them.

We will concentrate on the former cause of secondary
extinction because it's the simplest one, and can be applied to
statical (who eats whom) descriptions of ecosystems
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Species removal and the ““‘k
Internet A

A great input came from

statistical mechanics of

networks: Albert et al.

Studied the effects of

“extinction” of servers on

the Internet (and other || 0 e . Evormdatiackolerance
networks) structure T et |
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Scale Free networks

« Albert and colleagues
studied the effects of

hode removal in scale-

free networks

In such networks the
majority of nodes are

poorly connected, while

a few of them (hubs)
hold most of the
cohnections

Scale-free

] T & N L)
LE N B
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Errors and Attacks ""__k .

Applying nodes “extinction” to scale-free networks
they discriminate between two cases:

* Error 2 Random removal of nhodes
« Attack = Targeted removal of nodes

This is important because the removal of a few hubs

could damage the network structure dramatically, while
the removal of other nodes could poorly affect it.
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Errors and Attacks in biological =-,~——{ r
networks

Montoya & Sole (2002) and
Dunne et al. (2002), applied
the same experiment to
food webs.

They started removing the
most connected node and
removed all nodes with no
Incoming arcs {(secondary
extinctions). They plotted
extinction curves for most
connected removal vs.
random removal.
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Extinction curves
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Sequential removal of nodes; simulation; emphasis

on node’'s connectance.

But is connectance the most important factor for
assessing species importance in maintaining the

food web connhected?

S, Allesina, A. Bodini, C. Bondavalli
Ath ECEM — Bled slovenjia



A Counterexample F_k/<

In this case removing the node with the highest
connectance would produce no secondary effects
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Rooted networks ""__{ .

» While the Internet can be seen as an undirected

graph, food webs representing transfers of matter are
always directed (& = b means “b eats a”)

« All the energy comes from outside the system (Root)
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Dominators _K/\f”

We say that node A dominates B iff every path going
from Root fo B contains A

A Is the immediate dominator of B if A =dom(B) and
every dominator of A is a dominator of B as well.

The removal of a node will extinguish all the nodes it
dominates

Connecting every node to its immediate dominator
yields to the so-called dominator tree.
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Dominator Trees _K/\f”

We can associate to any Directed Graph rooted in R
another connected graph, containing N-1 arcs, called the
Dominator Tree: the removal of a node in the original

Graph will extinguish all the nodes that belong to its
branch in the Dominator Tree.

Root
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Dominators & Pathways ‘k/&

e.g.
Paths connecting R to A
R2>B>C-2>D-2A
R2>B2>E-2>D—2A
R=2>2B2>C2A

R->B>C>B>C->B->...2A

Only the nodes R,B,A belongs to all paths,
therefore the branch of the dominator tree
would look like R=>B—=>A

14
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Martinez, M.D., Hawkins, BE.A., Dawah, H.A. and Feifarek, EF., 19949, Effect of
sampling effort on characterization of food-web structure. Ecology, 50, 1044-105%
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Grassland Dominator Tree Jk/<
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Attacks & Errors Redefined *‘“k v

Error Sensitivity (ES). average number of extinctions
due to random removal

Max: | |
. dom(i)| — 1 | 9 N -1
ES = _ . .
2 (N —1) (N=1)2 (N -=1)2 T (N —1)2
_N(N-1) N ]
TXN-1)2 2N-1) 2
Min: G _ dom(i) — 1 N | N | |
. g N1 N-1F (N TN oap
_(N=1) ]
“(IN=-12  (N-1
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Attacks & Errors Redefined/2 _K/\f

Attack Sensitivity (AS). maximum number of extinctions
one can cause with a single removal

AS = max { |du(r;[-ai| ]_) ! }

AS ranges from 1/(N-1) (no secondary extinction) to
1 (complete extinction of the network).
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Quantitative extension ""__{ -

a
I'\'u
‘e

The dominator's algorithm is |
strictly qualitative (presence-
absence).

In real ecosystems the different
arcs (relations) have different
importance (values).

In ecological networks arcs represent flux of matter.

If one removes a node that furnishes the majority of
energy/matter the remaining fluxes could not be sufficient
to mantain the population.

19
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Quantitative extension/2 _{/\f”
We plotted the behavior of ES and AS when only the"h
strongest arcs were retained.

For each node we kept only the fluxes that contribute to
each node’s diet for a fraction greater than a given
threshold {.

Diet's fraction = (Entering Flux)/(Sum of Entering Fluxes)
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Results example

T
Y =F
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Gramminoid
Marshes:

67/ Nodes
/98 arcs
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Results example - DT

Bs 83
by ar

Gramminoid Marshes:

ES = 0.016 (1.056 nodes) AS=0.03 (2 nodes)
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Results example - 2
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Gramminoid
Marshes:

Setting Threshold
15%

=127 arcs

Only 16% of arcs
are retained!
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Results example — 2 DT
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Gramminoid Marshes:

ES =0.024 AS5=0.34
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34% of
species would
go extinct with
a single node

removall
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Errors in Big Networks

[Error Sensitivity
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8 well-studied
ecosystems

Big networks
(67-126 nodes)

Threshold
ranges from 0%
to 25%
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Attacks in Big Networks

lAttack Sensitivity
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Conclusions _K/\f”

Dominator Trees are elegant structures that
forecast the effects of hode removal

DTs can be studied using graph-theory
technigues

DT approach has still several limitations, that
can be solved taking into account quantitative
data

DT is based on static description and has to
be rebuilt in order to assess sequential
extinctions

27
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Dominators Algorithm - 1

VWe present the
implementation of Aho
et al. Because It's the
simplest one.

This algorithm runs In
n? in the worst case.

Benthos

R Sediment

POC Benthos

Zooplankton

R 0
sediment ()
POC 0
Benthos 0

Zooplankton 0

1
0
1
1
1

1
0
0
0
0

0
|
0
0
0

0
0

o e N
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Dominators Algorithm - 2 "’__k =

R 1 0 0 0 0
Sediment 1 1 1 1 1 — —
POC 1 1 1 1 1 Benthos | . [ Zooplankion
Benthos 1 1 1 1 1 F AT
Zooplankton 1 1 1 1 1 b
- - t Lo
For each node x excluding root we rewrite the 3" row | o\ Mo
as: Ry
dom(x)=xw(dom(i;)~dom(i)...~dom(i,)) .
Where iy, I5,...,I, are the nodes that point to x coot

e.g.. dom(Sediment)= Sediment w(dom{R)mdom{POC)~ dom{Zoopl.)dom(Benthos))

01000D0R
{1000 0 AND
AND

= e e
=
ol =
b ek ek
e e
et =
_—
=

That becomes: dom(Sediment) =

0O10000R{10000}y=11000
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Dominators Algorithm - 3 “-"‘{ -
> =<

We reiterate the procedure for
every row, and then restart ~ -
until no changes are made senines \y/ “oopianidon

ol

The final Dominator Matrix is

utilized for building the sediment ( ) (_Jroc
Dominator Tree "\ /
R 1 00 0 0 ‘
Sediment 1 1 0 0 0 Root
POC 1 01 0 0
Benthos 1 1 0 1 0
Zooplankton 1 0 1 0 1
. Allesina, A, Bodini, ©. Bondawalli 32
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