
Mach Learn
DOI 10.1007/s10994-007-5042-6

Inductive process modeling

Will Bridewell · Pat Langley · Ljupčo Todorovski ·
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Abstract In this paper, we pose a novel research problem for machine learning that in-
volves constructing a process model from continuous data. We claim that casting learned
knowledge in terms of processes with associated equations is desirable for scientific and
engineering domains, where such notations are commonly used. We also argue that existing
induction methods are not well suited to this task, although some techniques hold partial
solutions. In response, we describe an approach to learning process models from time-series
data and illustrate its behavior in three domains. In closing, we describe open issues in
process model induction and encourage other researchers to tackle this important problem.

Keywords Scientific discovery · Process models · Compositional modeling · System
identification · Ecosystem modeling

1 Introduction and motivation

Many scientific and engineering domains involve continuous variables that change over
time. The increasing availability of data from such systems presents both an opportunity
and a challenge for machine learning. Successful applications of induction methods hold
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obvious benefits, and there exist large literatures on computational methods for regression
and time-series prediction. But independent of accuracy, the predictive models that these
techniques learn from data make little contact with the formalisms and concepts used by
scientists and engineers. As Schwabacher and Langley (2001) have argued, domain experts
will benefit more from knowledge that is cast in communicable forms, utilizing notations
already familiar to them. And as Pazzani et al. (2001) have shown, experts in some domains
will reject a learning system’s output, even when very accurate, unless it makes contact with
their prior knowledge.

Research on discovering numeric laws (e.g., Langley 1981; Żytkow et al. 1990; Džeroski
and Todorovski 1993; Washio et al. 2000) addresses this concern, in that many scientists find
equations familiar. However, the resulting knowledge, which generalizes beyond the training
data, is typically descriptive in that it directly relates observed variables. In contrast, models
in science and engineering often provide explanations which include variables, objects, or
mechanisms that are unobserved, but that help predict the behavior of the observed variables.
Moreover, explanations posit causal structures that link these elements to observed variables
and often use general concepts or relations that occur in different models. Compare Kepler’s
third law, which relates a planet’s period to its distance from the sun, with Newton’s theory
of gravitation, which introduces a theoretical variable for gravitational force. Kepler’s model
answers a what question about planetary motion, whereas the latter answers a why question,
thereby providing an explanation.

We claim that scientists and engineers often state their explanations in terms of mecha-
nisms (Machamer et al. 2000),1 which illustrate how processes affect the properties of enti-
ties. These processes describe one or more causal relations among the entities.2 We develop
here a particular class of processes that are represented in terms of differential equations (for
modeling change over time) and algebraic equations (for modeling instantaneous effects).
Each such process may also include conditions, stated as threshold tests on its input vari-
ables, that describe when it is active. This representation ties the conceptual aspects of the
model—how the entities are related—with the mathematical formulations used in systems
biology, ecology, and other disciplines. A process model consists of a set of processes that
link observable variables with each other causally, possibly through unobserved theoretical
terms.3

Table 1 shows a simple process model for a predator–prey relationship between two pro-
tists (microorganisms). In this ecosystem, Didinium nasutum preys upon Paramecium au-
relia. The model includes three processes that explain the changes in the concentrations of
the two species. The first of these states that the aurelia concentration increases logistically,
limited by the environment’s carrying capacity, while the second process states that nasu-
tum decays exponentially. The third process explains the interaction between the two species
using a Holling type 1 response (Holling 1959). Here, the prey population decreases in rela-
tion to the size of both populations and the rate of predation. Likewise the predator popula-
tion increases correspondingly, with an additional term reflecting the efficiency of predation
(intuitively, the number of predators produced by consuming one prey). Given initial con-
ditions (e.g., nasutum = 64.67, aurelia = 276.60), this model can simulate changes in the

1Much debate still exists in the philosophy of science over the nature of mechanisms. For instance, see work
by Bechtel and Abrahamsen (2005), Glennan (2002), and Woodward (2002).
2A causal relation between entities X and Y means that the value of a property of X partially determines the
value of at least one property in Y or vice versa.
3Our framework can be viewed readily as a quantitative version of Forbus’ (1984) qualitative process theory,
from which we have borrowed many ideas.
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Table 1 A quantitative process model of a protist ecosystem with one predator (D. nasutum) and one prey
(P. aurelia). Prey growth is logistic, predator decay is exponential, and predation is explained using a Holling
type 1 response. The notation d[X, t,1] indicates the first derivative of X with respect to time t

model PredatorPrey;

variables aurelia{prey},nasutum{predator};
observable aurelia, nasutum;

process aurelia_growth;

equations d[aurelia, t,1] = 1.81 ∗ aurelia ∗ (1 − 0.0003 ∗ aurelia);

process nasutum_decay;

equations d[nasutum, t,1] = −1 ∗ 1.04 ∗ nasutum;

process predation_holling_1;

equations d[aurelia, t,1] = −1 ∗ 0.03 ∗ aurelia ∗ nasutum;

d[nasutum, t,1] = 0.30 ∗ 0.03 ∗ aurelia ∗ nasutum;

two species’ concentrations over time. Note that, as expected, the model predicts oscillatory
behavior, but it does not state this explicitly, as would descriptive laws. For comparison, the
model is equivalent to the two differential equations

ȧ = 1.81 · a · (1 − 0.0003 · a) − 0.03 · a · n,

ṅ = −1.04 · n + 0.30 · 0.03 · a · n

where n = nasutum, a = aurelia, and ẋ denotes the first derivative of x with respect to time.
Here we assume that the effects of multiple processes on the same variable are additive.

We assume that the specific processes in such a model are instances of some set of generic
processes that, taken together, compose background knowledge about the domain. For ex-
ample, each process in Table 1 instantiates a generic counterpart from Table 2. This direct
mapping between the model’s equations and the background knowledge provides two bene-
fits. First, the explicit relationship between the two levels of knowledge removes the need to
infer such a mapping, which can be difficult even for domain scientists. Second, the knowl-
edge encoded in the generic processes provides an important source of constraints on the
specific models one might consider as explanations for a data set.

We maintain that process models of the sort in Table 1 occur frequently in science and
engineering, and that inducing them from data is a worthwhile task for machine learning
researchers to address. We can state the task of inductive process modeling as:

• Given: Observations for a set of continuous variables as they change over time;
• Given: A set of observed, unobserved, and exogenous (i.e., unpredicted or forcing) vari-

ables that the model may include;
• Given: Generic processes that specify causal relations among variables using generalized

functional forms;
• Given: Constraints, such as variable type information, that determine which processes

may relate particular variables;
• Find: A specific process model that, when given initial values for the modeled variables

and values for any exogenous variables, explains the observed data and predicts unseen
data accurately.

Note that this formulation distinguishes between the generic processes given as input and
the specific processes in the induced model, which mention particular variables and para-
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Table 2 Five generic processes
for population dynamics with
constraints on their variables and
parameters. The variable type
constraints are denoted in braces
following the variable’s name,
while parameter bounds are
specified within brackets. The
notation d[S, t,1] indicates the
first derivative of S with respect
to t

library pred_prey;

generic process logistic_growth;

variables S{species};
parameters gr[0,3], ic[0,0.1];
equations d[S, t,1] = gr ∗ S ∗ (1 − ic ∗ S);

generic process exponential_growth;

variables S{species};
parameters gr[0,3];
equations d[S, t,1] = gr ∗ S;

generic process exponential_decay;

variables S{species};
parameters dr[0,2];
equations d[S, t,1] = −1 ∗ dr ∗ S;

generic process holling_1;

variables S1{prey}, S2{predator};
parameters ar[0.01,10], ef [0.001,0.8];
equations d[S1, t,1] = −1 ∗ ar ∗ S1 ∗ S2;

d[S2, t,1] = ef ∗ ar ∗ S1 ∗ S2;

generic process holling_2;

variables S1{prey}, S2{predator};
parameters ar[0.01,10], ef [0.001,0.8], ht[1,5];
equations d[S1, t,1] = −1 ∗ ar ∗ S1 ∗ S2/(1 + ht ∗ ar ∗ S1);

d[S2, t,1] = ef ∗ ar ∗ S1 ∗ S2/(1 + ht ∗ ar ∗ S1);

type species subtypeof number;

type predator subtypeof species;

type prey subtypeof species;

meter values. Later, we will see that this background knowledge provides important search
constraints through the model space.

Earlier in the paper, we claimed that scientists often explain systems in terms of mech-
anisms, and the task definition incorporates this emphasis on explanation. In one sense, we
consider process models explanatory because they associate pieces of equations with iden-
tifiable, causal relationships among entities. We illustrated this notion with the model in
Table 1 and the set of equations that it encodes. In a deeper sense, we appeal to Hempel and
Oppenheim (1948), who view an explanation as a collection of general laws and situation
specific conditions that support the deduction of observations. Although process modeling
does not directly map onto their framework, we can view the generic processes as general
laws and the model, which incorporates some of the situational conditions, as the formal ex-
planation of observed trajectories. This perspective serves as a primary distinction between
inductive process modeling and analysis techniques such as autoregression and recurrent
neural networks, which only describe how the measurements vary. The connection between
processes and general domain knowledge supplies the explanatory power of the process
modeling representation.

Another key point of the task definition is the insistence on simulation from minimal
input. That is, the model should predict the behavior of a dynamic system solely from the
starting values of all the variables and traces for the exogenous variables (i.e., those that
drive the model and that we assume the modeled processes do not affect).
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Although it is not a strict requirement on the inductive process modeling task, we make
one other assumption that simplifies model construction: the dynamical systems that the
models explain are generally viewed as deterministic. The observations themselves may
well contain noise, which can complicate matters for this paradigm as it does for others.
However, the framework posits that processes are always active whenever their conditions
are met and that their equations have the specified effects. Scientists and engineers often treat
the systems they study as deterministic, and we will operate under the same assumption.

This paper takes the form of an exploratory research report in the sense described by
Dietterich (1990). Following his advice, we state clearly a promising new problem for ma-
chine learning and explore its various facets. In the section that follows, we consider some
challenges posed by the problem of inducing quantitative process models. We then review a
variety of established induction paradigms, concluding that none can be applied directly to
this task, though some hold promising ideas on which we can build. After this, we describe
a candidate approach to process model induction and illustrate it with some initial results.
Finally, we close by suggesting an agenda for future research on this important topic. We
do not report extensive experimental studies, but we do present results on three domains as
evidence for the generality of both the task and our initial approach to it.

2 The task of inductive process modeling

We have claimed that the induction of process models differs from the problems typically
studied in machine learning. Thus, before proceeding further, we review the distinguishing
characteristics of this task, with a particular emphasis on the input and output that define the
problem. We also discuss the inability of current methods to address quantitative process
modeling and identify those approaches that relate most closely to the task.

2.1 Characteristics of inductive process modeling

Since process models characterize the behavior of dynamic systems over time,4 the data that
they explain are more appropriate to time-series regression than to most induction tasks.
First, the variables, which represent quantitative measurements of the system under study,
are primarily continuous. Second, the observed values are not independently and identically
distributed, since those observed at later time steps depend on those measured earlier. Thus,
the data violate an assumption made by the great majority of available learning algorithms.
Finally, the training data are primarily unsupervised, in that they describe a set of variables
that change over time, with no variable being singled out for special attention. Such un-
supervised learning is generally viewed as less constrained than learning from supervised
data.

In addition to data, process modeling requires as input a collection of generic components
that can explain aspects of a system’s behavior. Use of this knowledge offsets two difficulties
inherent to the problem. First, process models can include theoretical variables, which are
unobserved. The generic processes may indicate when such variables can appear and where
they fit within the model’s structure. Second, the processes that affect a variable are also
unobservable. Without domain knowledge, the equations representing these processes could
take an infinite number of forms, many of which would be implausible when viewed in the

4In some cases, the dynamic systems may be observed in a steady state.
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modeled system’s context. Hence, the generic processes (along with variable types) limit the
model’s structural form to ones that plausibly relate the variables.

The use of such domain knowledge leads to mechanistic models that explain the data
rather than empirical (i.e., descriptive) ones that merely summarize the trajectories. By re-
ferring to processes operating in the environment, we can specify not only which variables
interact but also how they do so. For example, the predator–prey model in Table 1 instanti-
ates the holling_1 predation process from Table 2, which suggests that the amount of time
taken for a predator to consume a prey is unimportant. In contrast, a model that includes
holling_2 would support a direct influence of the handling time (ht ) on the ecosystem’s dy-
namics. Unobserved variables combine with the processes to enhance a model’s explanatory
power by enabling a rich set of relationships without the need to measure every suspected
entity in the environment. These characteristics of process models address how entities in
the world behave as opposed to how measurements vary, and thus differentiate the output
of inductive process modeling from the purely descriptive models generated by neural net-
works, autoregressive techniques, and even traditional methods of equation discovery.

2.2 Related research

Due to the unique inputs and outputs of process model induction, previous research in ma-
chine learning provides little support for the task. For instance, research on theory revi-
sion appears relevant because it combines background knowledge with inductive learning
to improve the predictive accuracy of a given model (e.g., Ourston and Mooney 1990). This
framework often states domain theories as Horn clause programs, and the revision methods
employ operators for adding and removing rules’ conditions, as well as adding and remov-
ing entire rules. Although alternative formalisms exist, the paradigm assumes an explanatory
model at the outset, rather than constructing one from available components. More impor-
tantly, theory-revision methods emphasize learning classifiers from supervised data rather
than dealing with unsupervised regression. Thus, this approach seems like a poor match,
although we will return to it when we discuss open issues.

Inductive logic programming (e.g., Lavrač and Džeroski 1994) has a somewhat closer
connection to the task of learning process models. This framework takes advantage of back-
ground knowledge, stated as Horn clauses and ground literals, to learn from training cases.
The resulting knowledge is itself cast as a set of Horn clauses, possibly with nonterminal
(i.e., theoretical) symbols, and thus can have an explanatory character. But as usually prac-
ticed, inductive logic programming employs supervised learning for classification tasks and
often generates descriptive rules. Moreover, the research emphasis has been on generating
logical structures rather than numerical ones. However, Garrett et al. (2007) have used this
approach to infer metabolic pathways that involve biochemical processes and unobserved
entities, making them similar to our own models. Importantly, their system learns qualita-
tive models only and requires one to transform quantitative trajectories into qualitative states.
Even so, inductive logic programming holds promise as an approach to process model con-
struction, although both the performance and learning methods must be extended to support
numeric equations and continuous time.

Linear causal modeling constitutes another relevant paradigm, as it deals with unsuper-
vised quantitative data, produces a causal model, and can even incorporate latent (theoret-
ical) variables.5 Researchers have developed techniques to both construct (Glymour et al.

5Some readers may view linear causal models as Bayesian networks with Gaussian units and additive com-
bining functions, but the literature on them goes back much farther (e.g., Simon 1954).
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1987) and revise (Bay et al. 2002) linear causal models from scientific data. Nevertheless,
this approach has several drawbacks that limit its usefulness for inductive process modeling.
In particular, such models are limited to linear relations, they do not deal with continuous
time, and they do not organize causal links into processes. Thus we may be able to in-
corporate some ideas from linear causal modeling, but we cannot directly apply the basic
approach.

Since the task of inductive process modeling involves data appropriate for time-series
regression, we should also consider the applicability of ARIMA methods (Box et al. 1994).
These produce predictors stated as difference equations cast as a weighted, linear combina-
tion of one or more prior observations and random shocks. Given initial conditions, ARIMA
equations can produce forecasts of arbitrary length for a fixed-size time step, but, regardless
of their accuracy, such models cannot be interpreted as explanations. An ARIMA model
provides a concise description of the observed behavior, but it does not offer any hypoth-
esis about the underlying mechanisms. As a result, this approach fails to satisfy a primary
requirement of inductive process modeling.

Hidden Markov models (e.g., Poritz 1988) can also describe systems that change over
time, which makes them potentially relevant to our learning problem. Such models can play
an explanatory role, as evidenced by research in neuroscience that investigates the mecha-
nisms behind ion-channel gating (Zheng et al. 2001), but the emphasis lies on explicit tran-
sitions between inferred states, as opposed to the processes from which the state changes
emerge. For those fields primarily concerned with causality and relationships among enti-
ties as opposed to general system state, hidden Markov models provide a poor conceptual
match. In addition, the probabilistic assumptions of Markov models are unnecessary for sci-
entific and engineering domains that treat nature as deterministic.6 Therefore this approach
fails to fulfill the representational needs established by inductive process modeling.

Superficially, inductive process modeling appears closely related to work on equation
discovery (e.g., Langley 1981; Langley et al. 1987; Washio et al. 2000), in that both produce
numeric equations cast in the same forms that scientists use. However, such methods focus
on inferring descriptive models that summarize and predict the data without explaining them,
much as occurred in the early days of physics and chemistry. Research on the discovery
of differential equations (e.g., Džeroski and Todorovski 1993; Todorovski and Džeroski
1997; Todorovski 2003) deals with change over time, but it does not produce models that
include theoretical variables or, more importantly, that group terms into processes familiar
to domain scientists. In general, work in this tradition generates understandable models but
does not formulate explanatory accounts from candidate structures, making it quite distinct
from inductive process modeling.

Research on system identification (e.g., Åström and Eykhoff 1971) also has little rel-
evance to our concerns, for similar reasons. Here the standard task is to infer parameters
for a system of differential equations to reproduce and predict observed time series, which
could be useful for a component parameter estimation task but not the overall problem of
process model induction. Methods for structural system identification (e.g., Bradley et al.
2001) also induce the forms of differential equations, but this approach lacks a means for
encoding process information and requires only that the models be consistent with observed
behavior. Work on hybrid systems (e.g., Ghosh and Tomlin 2001) includes methods that
construct finite-state models with embedded differential equations, which lets them provide

6A similar argument holds for dynamic Bayesian networks (e.g., Ghahramani 1998), which have a similar
flavor.
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somewhat deeper accounts of observations, but, like hidden Markov models, they focus on
system states rather than mechanistic processes.

Perhaps the most relevant work comes not from machine learning but from qualitative
physics. We have already mentioned how our representation of models draws on Forbus’
(1984) qualitative process theory by extending his qualitative formalism into a quantitative
one. Moreover, Forbus and Falkenhainer (1990) report an approach to compositional mod-
eling, which selects and combines known model fragments to produce desired qualitative
behavior. The resulting structures explain the behavior in terms of component processes,
much as required for the inductive process modeling as we have defined it. However, we
must extend this idea to compose and parameterize quantitative processes that account for
detailed trajectories, which involves additional challenges.

In summary, no existing approach addresses all the issues that arise in process model
induction, which suggests that we need novel learning methods to solve this new problem.

3 Inducing process models

Our primary aim in this paper is to both characterize and advocate the problem of inducing
process models from background knowledge and data. To this end, we have built a baseline
system that provides evidence for the task’s feasibility and that can serve as a nontrivial
comparator for future work. Following common practice, we describe our system in terms
of the formalism that encodes the resulting models, the inputs that drive learning, the per-
formance element that uses them, and the learning method that constructs the models. We
close the section with a methodology for evaluating inductive process modelers.

3.1 Representing background knowledge and models

We have already seen one example (Table 1) that involves a three-process model for a pro-
tist ecosystem. To reiterate, a process model specifies a set of processes that characterize
quantitative relations among a set of observed, and possibly unobserved, variables. Each
process includes zero or more conditions under which it is active, along with at least one
causal equation that characterizes the influence that one or more variables exert on another.
Although the processes in a given model are unordered and operate in parallel, we can or-
ganize them into a causal graph that equates the outputs of some processes with the inputs
of others (Iwasaki and Simon 1994).

Table 2 presents a set of processes for population dynamics, which concerns changes in
species’ population levels over time (Murray 2004). The table contains generic processes
that serve as background knowledge for learning; unlike specific processes, these do not
commit to particular variables or parameter values, but they can indicate constraints on
them. For example, the process for exponential growth states that its variable S must have
type species and that its equation’s coefficient gr must fall between zero and two. The back-
ground knowledge also contains a hierarchy of variable types that stem from the base type
number. Note that processes in this domain include no conditions, so they are continuously
active.

In addition to the generic processes, an inductive process modeler needs a set of typed
variables and training data for those declared observable. For example, to construct the
model in Table 1, the program would require nasutum to have type predator and aurelia
to have type prey. Combined with the set of generic processes, this information defines the
space of model structures that the induction system will search. Since both variables are
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observable, two trajectories must be supplied. These data provide a means both to direct the
search for parameters and to evaluate the instantiated process model.

As one can see, both the input and the output of inductive process modeling differ from
those of other induction tasks. The richness of the background knowledge and the use of
temporal data support the development of detailed causal models that carry more informa-
tion than simpler influence diagrams. As a result, a quantitative process model can explain
observed trajectories for its variables, which lets scientists analyze the effects of system
perturbation and infer the behavior of theoretical entities.

3.2 Making predictions with process models

To produce the trajectories useful to scientists, one needs a performance element that can use
the learned knowledge. In this case, we require an interpreter that can generate a predicted
trajectory for each observable variable by carrying out forward simulation of a quantitative
process model. To this end, we have implemented a module that operates in two phases.
The first of these combines the components from each of the processes into a system of dif-
ferential and algebraic equations.7 During this conversion, the system ensures both that the
algebraic equations will be solved according to their causal ordering and that the conditions
are correctly associated with the equations.

The module’s second phase evaluates the model using CVODE, an established method
for solving first-order differential equations (Cohen and Hindmarsh 1996), which we couple
with basic arithmetic operations for handling the algebraic equations. For this phase, we
must provide:

• initial values for observed and unobserved variables,
• time series for the exogenous variables,
• specification of the simulation time points.

From this input, the simulator uses the initial values to solve the system of equations for
the second time point as determined by the temporal resolution. The output of this step and
the values of the exogenous variables at this time serve as the input for the third point, and
so on until the program reaches the specified end time. This iterative procedure produces a
trajectory for each variable, such as those Fig. 3 shows in Sect. 4.2.8

3.3 Constructing a model from components

Once provided with background knowledge, which includes generic processes and a type
hierarchy for variables, a collection of variables to be modeled, and time-series data about
the particular quantitative variables one wants to explain, an induction system can carry
out constrained search through the space of process models. We have implemented such a
system, called IPM, wherein the search mechanism operates in three distinct stages.9

7As we mentioned in Sect. 1, the system assumes that, when multiple processes influence the same variable,
the effects are additive.
8Numerical solvers such as CVODE provide approximate solutions to systems of nonlinear differential equa-
tions. Although these tools take great care in the assessment and control of error, one should be aware of
their limitations, which generally follow from limited-precision calculations. For the reported work, we use
of CVODE’s error control features, but leave an detailed study of their effects for future research.
9IPM serves as one component of PROMETHEUS, an integrated environment for process modeling that we
have described elsewhere (Bridewell et al. 2006).
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Table 3 Permissible bindings of generic processes from the population dynamics domain with the variables
nasutum of type predator and aurelia of type prey

logistic_growth: S → aurelia exponential_decay: S → nasutum

logistic_growth: S → nasutum holling_1: S1 → aurelia

exponential_growth: S → aurelia S2 → nasutum

exponential_growth: S → nasutum holling_2: S1 → aurelia

exponential_decay: S → aurelia S2 → nasutum

Table 4 A generic model from
the predator–prey domain process logistic_growth;

parameters gr[0,3], ic[0,0.1];
equations d[aurelia, t,1] = gr ∗ aurelia ∗ (1 − ic ∗ aurelia);

process exponential_decay;

parameters dr[0,2];
equations d[nasutum, t,1] = −1 ∗ dr ∗ nasutum;

process holling_1;

parameters ar[0.01,10], ef [0.001,0.8];
equations d[aurelia, t,1] = −1 ∗ ar ∗ aurelia ∗ nasutum;

d[nasutum, t,1] = ef ∗ ar ∗ aurelia ∗ nasutum;

In its first stage, IPM finds all the permissible instantiations of the generic processes with
the specified variables. For instance, the exponential_growth process from Table 2 requires
a variable with type species. Consider the two variables nasutum with type predator and
aurelia with type prey. Since the types of these variables are subtypes of species, IPM will
create two instantiations of the exponential_growth process—one for each variable binding.
Table 3 shows all eight permissible bindings between the two variables and the generic
process library given in Table 2. After creating these bindings, IPM must determine which
processes a model should include and what values the associated parameters should take.

The program’s second stage uses subsets of this collection of partially instantiated
processes to form generic models, each of which specifies an explanatory structure. In IPM,
each permissible binding is an element in a set P , and each member of the power set of
P is a generic model. The system carries out an exhaustive search of model structures by
enumerating this power set, retaining as candidate models only those members that satisfy
user-provided constraints, which currently includes the maximum number of processes in
the model and the list of generic processes that must be instantiated. Table 4 shows one
valid generic model built from the bound processes of Table 3. Here all the variables are
bound, but the parameters lack specific values.

The third stage infers the parameter values for each generic model using two estimation
strategies. At the core of this stage, IPM employs a nonlinear least-squares algorithm (Bunch
et al. 1993) that carries out a second-order gradient descent search through the parameter
space. For the first strategy, the program guides this estimation routine by simulating the
full set of trajectories from initial values and providing information about the residuals for
each observable variable. Search terminates based on a set of convergence criteria described
by Dennis et al. (1981) and Gay (1983). To further avoid entrapment in local minima, IPM
restarts the estimation routine from multiple random points in the parameter space.

When all the variables are observable, IPM augments the above search with a second
strategy that uses teacher forcing (Williams and Zipser 1989), an alternative method that
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does not evaluate full simulations but rather aims to minimize the error in predicting values
at time Ti+1 from those at Ti . Given n samples, the program performs n − 1 one-step sim-
ulations, forwarding the information about the residuals to the same nonlinear least-squares
algorithm mentioned above. Since local minima can still cause problems, IPM restarts the
teacher forcing approach at multiple randomly selected points. Experience suggests that this
technique finds a good region of the parameter space from which to start the more costly
search based on full simulations, so the parameters selected by this technique seed one of
the restarts for the full-simulation strategy.

From among the results for each estimation run, IPM selects the best set of parameters
according to a fitness measure. The system currently uses the sum of squared error (SSE)
for this step, which is defined as

n∑

i=1

SSE(xi, x
obs
i ) =

n∑

i=1

m∑

k=1

(xi,k − xobs
i,k )2

for variables x1, . . . , xn with m observed values each. To support modeling variables of
different scale, one can use the relative mean squared error, which is defined as

∑n

i=1
SSE(xi ,x

obs
i

)

s2(xobs
i

)

nm
,

where s2(xobs
i ) gives the unbiased sample variance of the observations for xi . Like SSE,

lower scores on this measure indicate better fit, but due to the rescaling, we can compare
values across data sets. In addition, a relative mean squared error of 1.0 indicates that the
model performs as poorly (or as well) as predicting the mean value of the trajectory. Mea-
sures that account for the parametric complexity of a model (e.g., the Bayesian information
criterion), are also reasonable but they would require a different parameter estimation rou-
tine due to the input required by Bunch et al.’s (1993) method.

Notably, IPM also lets one treat the initial values of the simulation as parameters. Often
scientists and engineers can give only plausible ranges or approximate values for theoreti-
cal variables. In these cases, allowing variability in the initial values can help the program
achieve a better fit to the observed trajectories. Moreover, noise can exist in the measure-
ments of observable variables, so the system can also treat their initial values as parameters.
Upon completion of its search, IPM returns a list of models, which are associated with their
error scores and initial values.

Since IPM carries out an exhaustive search of model structures, the system’s power rests
in its knowledge of the modeled domain (i.e., the list of generic processes) and in the ca-
pabilities of its parameter estimation routine. As the number of model structures increases,
exhaustive exploration becomes prohibitive, and one must either define other constraints to
reduce this number or develop new search strategies appropriate to the space of nonlinear,
dynamic models. Section 4.3 illustrates the role of additional structural constraints, but we
leave the development of sophisticated search algorithms to future research.

3.4 Evaluation of inductive process modeling

To contribute to understanding a dynamic system, an induced process model should be
comprehensible, plausible, and accurate. The first two of these characteristics reflect hu-
man judgment, and are both subjective and domain dependent. In this paper, we touch on
these aspects briefly and somewhat anecdotally, choosing to look more closely at measures
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Table 5 An alternative set of
generic processes that capture the
interaction between predators and
prey

generic process predation;

variables S1{prey}, S2{predator},R{rate};
parameters ef [0.001,0.8];
equations d[S1, t,1] = −1 ∗ R ∗ S2;

d[S2, t,1] = ef ∗ R ∗ S2;

generic process holling_1;

variables S1{prey},R{rate};
parameters ar[0.01,10];
equations R = ar ∗ S1;

generic process holling_2;

variables S1{prey},R{rate};
parameters ar[0.01,10], ht[1,5];
equations R = ar ∗ S1/(1 + ht ∗ ar ∗ S1);

of quantitative accuracy. The objectiveness of fitness scores suggests their use in ranking
process models and evaluating process-modeling systems. After describing comprehensibil-
ity and plausibility in more detail, we outline an evaluation methodology based on model
accuracy.

3.4.1 Comprehensibility and plausibility

We separate comprehensibility into structural and syntactic components, whereas we stress
that plausibility is a function of structure alone. Support for the syntactic comprehensibility
of process models follows from our claim that a modeling notation must be familiar to sci-
entists. To this end, we based the process modeling language on the systems of differential
and algebraic equations that scientists often use to explain observed phenomena. Moreover,
the language is similar enough that one could build a model by placing an entire system of
equations into a single process with the minimal syntactic overhead of providing variable
declarations and a process name. We claim that the added ability to associate parts of equa-
tions with the processes that they represent increases comprehensibility by clarifying the
mechanism of the modeled system.

One’s choices about which processes to represent and how they behave affect a model’s
structural comprehensibility. Scientists may differ in their beliefs along these dimensions,
but a capable representation will help them communicate the differences in their views.
To illustrate, in Table 2 we represented predation in the generic processes holling_1 and
holling_2. Alternatively, we could have introduced a separate predation process and isolated
those equation elements that set the rate of consumption, as shown in Table 5. The two
decompositions are mathematically equivalent but structurally different. Nevertheless, the
names of the processes and the participating variable types help elucidate the meaning and
organization of these two libraries. Our experience with ecologists and other biologists sug-
gests that the quantitative process modeling formalism is comprehensible in terms of both
syntax and structure (Bridewell et al. 2006). In particular, researchers familiar with differ-
ential equations and their use in biological modeling needed only a brief orientation to the
language.

As with the comprehensibility, plausibility refers to an instantiated model’s structure, in
that implausible models violate constraints on the processes that may appear. For example,
the explicit requirement that an exponential loss process occur in a model renders struc-
tures without that component invalid and hence implausible. In addition to the constraints
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supported by IPM, scientists place other limitations on model structure that our current rep-
resentation cannot capture. To illustrate, an ecologist may assert that a population dynamics
model must contain either an exponential or a logistic growth process but not both. How-
ever, IPM lacks a means for specifying this type of knowledge and will consider structures
that violate this constraint. In Sect. 4 we include a brief discussion of model plausibility in
three problem domains and report on extensions to IPM’s constraints.

3.4.2 Quantitative accuracy

Whereas comprehensibility and plausibility are subjective measures, quantitative accuracy
provides an objective means for model evaluation. For inductive process modeling, we posit
two approaches to assess accuracy: one based on interpolation and the other based on ex-
trapolation. Briefly, interpolation involves the removal of randomly selected measurement
vectors from the given time series. One then trains on the remaining points and predicts
(or postdicts) the points that were held out for testing. In comparison, extrapolation uses
a fixed boundary such that one uses the measurements taken before the selected time for
training and holds out those following it for testing. We use both approaches as the basis of
an experimental methodology for inductive process modeling.

For the interpolation task, we modify k-fold cross validation to make it applicable to
time-series data. Given a data set composed of multivariate temporal trajectories, we remove
the values for the initial time point T0 and generate the k subsets by filling them with the
remaining data selected uniformly at random and without replacement, as in standard cross
validation. We then create the k folds, prepending observed values for T0 to each training
set. After IPM produces a model, it simulates the trajectories using its own estimated values
for T0 and overlays each trajectory onto the appropriate test set. This procedure temporally
aligns the interpolated values with the observed ones. Thus we measure the model’s ability
to predict values in the past based on surrounding observations. Research in archeology
and paleontology provides a useful metaphor, where scientists reconstruct the communal or
biological occurrences that fall between data from multiple eras. By adjusting the value of
k, we control the amount of training data.

To evaluate according to extrapolation, we identify boundaries between the training and
test data by percentage. For instance, given some time series, we can train on the first half of
the observations and test on the second half. Shifting the boundary forward in time will help
determine the effect of adding more training data on forecast accuracy. With this method, we
gauge performance on the test set by simulating forward from T0 of the training data through
the end of the trajectories. Models that incorporate exogenous variables present a curious
problem in that the future values of those variables are generally unknown. However, for
purposes of evaluation, we assume the availability of these values during testing and issue a
caveat that the use of exogenous trajectories simulated by a separate model may introduce
further error.10

These approaches assess a model and a modeling approach according to two of the many
aspects on which one might judge it. Interpolation reveals how well IPM can learn from
sparse data and to what extent more frequent sampling will improve its ability to learn an

10The proposed approach to extrapolation conflates three experimental factors. That is, increasing the amount
of training data both decreases the amount of testing data and alters the boundary between the two sets. Using
fewer test data reduces a model’s burden to be accurate. In addition, some regions of a trajectory may be
generally more difficult to predict than others, so a model need not be as accurate if the hold-out boundary’s
position is in a “simple” section of the data. We do not explore these issues in detail for this paper.
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accurate model. Extrapolation provides a strong test of a model’s suitability for forecasting
purposes. Although we emphasize these tasks in this paper, we note that they form a single
step in the argument for a model’s general utility, which includes appeals to acceptability,
plausibility, and generalization to qualitative phenomena not used to guide model develop-
ment.11 In the next section, we evaluate IPM’s quantitative performance on these two criteria
in three scientific domains.

4 Applications and results

In previous sections, we characterized the task of inductive process modeling and described
one approach to it. In this section, we report results for our current implementation on three
scientific domains. In the first we apply an extension of the generic processes given in Ta-
ble 2 to predator–prey data. The second domain centers on the population dynamics for
the aquatic ecosystem of the Ross Sea. The final modeling task involves the dynamics of
Ringkøbing Fjord as its water level responds to various environmental conditions. In each
case, we discuss both the inputs to IPM and the models it produces. We judge success based
on predictive accuracy and model comprehensibility.

4.1 Predator–Prey interactions

The relationships between predators and their prey serve as the core aspect of many eco-
logical models. Researchers believe that such interactions drive the evolution of the species
involved, leading to the development of defense mechanisms in the prey and corresponding
adaptations in the predators. In addition, by understanding predation one gains knowledge
about sustainability, which can determine the effects of species introduction or removal upon
a particular ecosystem. Research in this area effectively began in the last century through
the work of Lotka and Volterra, as Berryman (1992) has recounted.

The Lotka–Volterra model of predation effectively assumes three fundamental processes:
prey growth, predator decay, and predation. We can state the original formulation as

Ḟ = γF − αFC,

Ċ = εαFC − δC,

where F represents the prey population and C the predator population. Here the growth
rate, γ , controls the exponential increase of prey over time, whereas the decay rate, δ, sim-
ilarly specifies the natural decrease of the predator population. Predation correspondingly
decreases the number of prey while increasing the number of predators, as influenced by the
density of both populations and a fixed attack rate, α. An efficiency factor, ε, corresponds to
the ratio of predators produced with respect to the number of prey consumed, so that smaller
values slow predator growth. Since the introduction of this model, ecologists have suggested
a variety of alternative forms with different mathematical expressions for the growth, loss,
and predation processes.

For our experiments, we combined the partial library in Table 5 with the generic
processes in Table 6 and others to define two types of growth for the prey, the predation
process, 13 ways to determine the predation rate, and one type of loss for the predator. Both

11See Arrigo et al. (2003) for a paradigm of such an argument.
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Table 6 Additional generic
processes for the predator–prey
domain. Variable type constraints
are denoted in braces following
the local name, while parameter
bounds are specified within
brackets

generic process ratio_dependent_2;

variables S1{prey}, S2{predator},R{rate};
parameters ar[0.01,10], ht[1,5];
equations R = ar ∗ S1 ∗ S2/(S2 + ht ∗ ar ∗ S1);

generic process ivlev;

variables S1{prey}, S2{predator},R{rate};
parameters delta[0.001,1], sat[0.0001,1];
parameters ar[0.01,10], ht[1,5];
equations R = S2 ∗ sat ∗ (1 − e(−delta∗S1));

generic process hassell_varley_1;

variables S1{prey}, S2{predator},R{rate};
parameters sat[0.0001,1],mu[1,100];
equations R = sat ∗ S1 ∗ S2−mu ∗ S2;

generic process deangelis_beddington;

variables S1{prey}, S2{predator},R{rate};
parameters ar[0.01,10], ht[1,5],mi[0,1];
equations R = ar ∗ S1 ∗ S2/(1 + ht ∗ ar ∗ S1 + mi ∗ S2);

generic process crowley_martin;

variables S1{prey}, S2{predator},R{rate};
parameters ar[0.01,10], ht[1,5],mi[0,1];
equations R = ar ∗ S1 ∗ S2/((1 + ht ∗ ar ∗ S1) ∗ (1 + mi ∗ S2));

exponential growth and loss come from the Lotka–Volterra model, whereas logistic growth
restates the Malthus–Verhulst equation. We took most of the functional forms for the pre-
dation rate from Jost and Ellner (2000), who place them into two general categories. The
Holling and Ivlev processes treat predation solely as a function of prey density, while the
rest also incorporate the predator density. No single form of these processes sufficiently ac-
counts for every predatory interaction, so the explanation of an observed system requires a
search through the space of model structures in addition to parameter estimation.

We provided IPM with the expanded set of generic processes along with data for the
protist ecosystem introduced in Sect. 1. These data, originally collected by Vellieux (1979),
consist of twice daily recordings of the densities of both Didinium nasutum (the predator)
and Paramecium aurelia (the prey).12 We selected two data sets that consist of 71 and 52
recordings each. Visual inspection of the data indicated irregularities during the first few
days of both experiments, which suggested that different regimes were operating at those
times. As a result, we truncated the data sets to 54 and 28 samples, respectively, concentrat-
ing our attention on the more regular, though still noisy, sections of the trajectories. Figure 1
shows the full trajectories, along with lines that indicate points of truncation. Through-
out this section, we refer to the truncated data in Fig. 1(a) as pd-a and that in Fig. 1(b)
as pd-b.

To evaluate IPM, we used the technique described in Sect. 3.4. Specifically, we carried
out two-, three-, four-, and five-fold cross validation with the system on each of the Vellieux
data sets to determine the effect of training set size on interpolative performance. We also

12Jost and Ellner (2000) extracted the data from the original paper and made them publicly available at
http://www.pubs.royalsoc.ac.uk as an appendix.
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Fig. 1 Trajectories for two predator–prey data sets. Samples to the left of the vertical lines were not used
because they appeared to involve different regimes

carried out forecasting experiments, in which we set the hold-out boundary at 10% inter-
vals from 50% and 90%. Finally, we had IPM build a model from each complete data set.
During training, the program searched for the model with the lowest relative mean squared
error. In each case, we told it to search for models with four or fewer processes. The size
limitation stems from domain knowledge about the nature of predation; that is, an explana-
tory model would typically include one process for each of prey growth, predator loss, and
predatory interaction. By decoupling the predatory interaction process from the calculation
of the predation rate, we expect plausible models to contain no more than four processes.
The resulting search space consisted of 3,214 structures.

Training IPM on all the data in pd-a led to a model with a relative mean squared error
(reMSE) of 0.35 and a coefficient of determination,13 or r2, of 0.72. In comparison, the
program’s best fit to pd-b had an reMSE of 0.097 and an r2 of 0.98. Figure 2 shows the
values of these measures as they vary with the amount of training data in the interpolation
and extrapolation experiments.

The graph on the left of Fig. 2 shows the results of the interpolation task. There are two
primary findings from these experiments. First, notice that the number of cross-validation
folds has no substantial effect when fitting the data from pd-b. Moreover, the reMSE for
the two-fold case, in which we reserved 50% of the data for testing in each fold, was 0.13
and the r2 was 0.97. Both values are fairly close to the fitness of a model trained on all of
pd-b, and they are roughly identical to the five-fold case. This observation suggests that IPM
is very robust to data sparsity. The second finding is that, in the face of more challenging
data, no discernible trend surfaces that would relate fitness to sparsity. The scores associated
with pd-a reach their best values in the three-fold case, where IPM induced models from
2/3 of the data, but they decline thereafter. An experiment using ten-fold cross validation,
not shown in the figure, produced an reMSE of 0.40 and an r2 of 0.66. These values are
slightly better than those for five-fold cross validation, but remain worse than those from the
three-fold run. This finding further suggests the robustness of the system to sparse data.

13For IPM, the coefficient of determination is the square of the correlation coefficient. As such, values range
between 0.0 and 1.0, where a larger value indicates that the model accounts for more of the variance in the
data. Higher values of r2 tend to reflect that a simulation better fits the shape of an observed trajectory. In
comparison, reMSE is unbounded, but predicting the mean value results in a score of 1.0, and lower scores
indicate better fit.



Mach Learn

Fig. 2 The effect of the amount of training data on model fitness in the population dynamics domain. Results
from cross validation appear on the left and those from forecasting appear on the right

The graph on the right of Fig. 2 shows the results of the forecasting task. In the associated
experiments, we judged how the amount of training data affects the forecasting capabilities
of the induced models. Before we discuss the results, we note that the high reMSE scores
associated with training on 90% of the data result from a poor estimate of variance in both
pd-a, where the test set consisted of five points, and pd-b, which contained only two obser-
vations for each variable. To be more specific, the variance of the D. nasutum observations
was an order of magnitude smaller than the value calculated from the complete trajectory.
If we use the variance from the full trajectory, the fitness scores fall in line with the others
in the graph. In addition, we recognize that the length of the forecast may interfere with the
actual predictive accuracy of a model (i.e., we expect forecasts that reach further into the
future to be less reliable than those that predict a more local change), but the results in this
study give a reasonable indication of IPM’s capabilities.

The main finding from the extrapolation experiments is that, as one might expect, fore-
casting power tends to decrease with the amount of training data. The effect surfaces in the
experiments on pp-a when IPM uses only 70% of the training data. Interestingly, the ex-
periments for pd-b indicate exceptional performance in extrapolation even in conditions of
minimal data. Given this result, we ran further tests to see at what point IPM was unable to
produce a model of reasonable quality. With 70% held out, the best model gives an reMSE
of 0.64 and an r2 of 0.89, both of which are still reasonable. To give an idea of how much
data were used, the hold-out boundary in this condition fell just before the first trough in the
prey measurements (see P. aurelia in Fig. 1(b)). Finally, we held out 80% of the data, which
puts the boundary in the middle of the first prey peak. The best model from this experiment
produced an reMSE of 4.90 and an r2 of 0.39 on the test data, which indicates that the model
performed worse than predicting the average values.

For explanatory models, predictive accuracy provides only a partial means for gauging a
model’s utility. One must also evaluate its plausibility in terms of its adherence to theoretical
constraints. Consider the quantitative process model shown in Table 7. The structure consists
of a growth process for the prey, a loss process for the predator, a predation process, and a
process that sets the rate of predation. Apart from the use of logistic growth instead of the
exponential form, this model corresponds directly to the Lotka–Volterra system of equations.
The corresponding model for data set pd-b was similar, although it used an alternative form
for the predation rate.

That IPM learns a plausible model in this case is not surprising. Recall that one may
both restrict generic processes to act on variables of certain types and limit the number of
instantiated process in a model. For these experiments, we limited the growth processes to
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Table 7 The model with the best fit for pp-a

model pd_a;

variables aurelia{prey}, nasutum{predator}, predation_rate{rate};

observable aurelia, nasutum;

process logistic_growth;

equations d[aurelia, t,1] = 1.62259 ∗ aurelia ∗ (1 − 0.00023 ∗ aurelia);

process exponential_loss;

equations d[nasutum, t,1] = −1 ∗ 1.10775 ∗ nasutum;

process predation;

equations d[aurelia, t,1] = −1 ∗ predation_rate ∗ nasutum;

d[nasutum, t,1] = 0.34053 ∗ predation_rate ∗ nasutum;

process holling_1_rate;

equations predation_rate = 0.02628 ∗ aurelia;

initial conditions: aurelia = 71.25362, nasutum = 27.40818

variables with type prey, the loss process to those with type predator, and the model to at
most four processes. Due to the properties of the equations, a model lacking alternatives
for any of the four that occur in Table 7 could not produce oscillations and would provide
a poor fit to either data set. The important aspect of this analysis is that IPM’s means for
constraining the model space suffices to ensure a plausible structure in this scenario.

4.2 The Ross Sea ecosystem

Although studying isolated pairs of species can provide useful information about population
dynamics, most ecosystems comprise complex interrelationships among multiple species
and energy sources. In these environments, processes such as growth and loss exhibit more
complicated forms. In particular, remineralization, which replenishes crucial nutrients, re-
sults from organism decay, while the availability of various energy sources may limit species
growth. To aid our task, we worked directly with experts in oceanography and ecology to
determine the required knowledge for modeling an aquatic ecosystem.

Table 8 presents a few of the resulting generic processes that relate nutrients, animals,
plants, and environmental factors. At an abstract level, an aquatic ecosystem consists of
plants (p_species) that absorb available nutrients (fe_nutrient and n_nutrient) at a rate medi-
ated by environmental conditions. In addition, animals (z_species) graze on the plants, and
a portion of any dead organic matter becomes part of the detrital pool. Finally, the processes
of remineralization, which converts detritus into its constituent nutrients, and mixing, which
introduces nutrients from lower depths of the ocean, ensure a continued source of food for
the plants.

We used a superset of the processes in Table 8 to develop a model of phytoplankton
growth in the Ross Sea—an environment that holds particular interest for ecologists (e.g.,
Arrigo et al. 2003) both for its relative simplicity and for the size of its phytoplankton
blooms. The data included measurements of nitrate and phytoplankton concentrations from
cruises in the Southern Ocean, which the domain experts interpolated to produce values for
each of 188 days. We also used daily satellite measurements of the sea surface temperature,
the available light, and the percentage of ice coverage as forcing data for exogenous terms.
In addition to the measured variables, we introduced theoretical ones that could help explain
the observed behaviors. For example, we told IPM to consider models that include zoo-
plankton concentration even though we lacked data for the grazers and were unsure of the
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Table 8 A partial set of generic processes for an aquatic ecosystem. All variable types are direct subtypes of
number

generic process producer_growth;

variables P {p_species},G{p_grate},L{p_glimit}, T {temperature},C{ice};
parameters max_growth_rate[0.1,0.8];
equations G = max_growth_rate ∗ exp(0.06933 ∗ T ∗ (1 − C) ∗ L;

d[P, t,1] = G ∗ P ;

# 12.0107 g/mol is the atomic mass of carbon.

generic process nitrate_uptake;

variables P {p_species},N{n_nutrient},ntoc{n_const},G{p_grate};
equations d[N, t,1] = −1 ∗ 1/(ntoc ∗ 12.0107) ∗ G ∗ P ;

generic process iron_uptake;

variables P {p_species},F {f e_nutrient}, fetoc{f e_const},G{p_grate};
equations d[F, t,1] = −1 ∗ 1/(fetoc ∗ 12.0107) ∗ G ∗ P ;

generic process grazing;

variables Z{z_species},P {p_species},D{detritus},ZR{z_rate},B{ratio};
parameters efficiency[0.05,0.4];
equations ZR = 0;

d[Z, t,1] = efficiency ∗ ZR ∗ Z;

d[P, t,1] = −1 ∗ ZR ∗ Z;

d[D, t,1] = (1 − B) ∗ (1 − efficiency) ∗ ZR ∗ Z;

generic process monod;

variables ZR{z_rate},P {p_species};
parameters delta[0,10],max_grazing_rate[0.3,0.5];
equations ZR = max_grazing_rate ∗ P/(delta + P);

generic process zoo_loss;

variables Z{z_species},D{detritus},B{ratio};
parameters loss_rate[0,0.5];
equations d[Z, t,1] = −1 ∗ loss_rate ∗ Z;

d[D, t,1] = (1 − B) ∗ loss_rate ∗ Z;

generic process nitrate_mixing;

variables N{n_nutrient}, T {temperature};
parameters max_mixing_rate[0.000001,4],avg_deep_conc[31,32];
equations d[N, t,1] = (avg_deep_conc − N) ∗ max_mixing_rate∗

(datamax(T ) − T )/(datamax(T ) − datamin(T ));

generic process nitrate_limitation;

variables N{n_nutrient},L{p_glimit};
parameters lambda[0.0000001,1];
equations L = N/(N + lambda);

extent of their effect on the phytoplankton concentration. We also included various terms,
such as the growth rate of phytoplankton, that correspond to concepts in ecological theory.

We evaluated IPM on the Ross Sea data using the same interpolation and extrapolation
experiments described in Sect. 4.1. During training, IPM searched for the model with the
lowest relative mean squared error. The library contained a total of 15 generic processes,
each of which had a single valid binding to the given variables. To reduce the structural
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Fig. 3 Simulated and observed trajectories of phytoplankton (left) and nitrate (right) concentrations for the
1996–1997 Ross Sea bloom

search space, we identified a subset of generic processes that must occur in the model. As
an illustration, the phytoplankton population must increase to fit the data. This requirement
implies that the model contains an instantiation of producer_growth. In all, we forced the
use of five generic processes and left the remaining ten optional, which resulted in a search
space containing 1,024 structures. Finally, we altered the default combining scheme for the
growth limitation variable to take the minimum of the influences. To clarify, each limiting
factor (nitrate, iron, light) affects phytoplankton independently and, at any specific time,
one of these will provide the strongest limit on growth. This relationship is not captured
by summation, and although one can introduce auxiliary variables for each of the limiting
factors and explicitly take the minimum, that solution would introduce other complexities.14

The model produced from all the data had an reMSE score of 0.098, an r2 value of 0.966,
and led to the trajectories shown in Fig. 3.

IPM’s scores on the interpolation task matched those from the full data. Specifically,
reMSE ranged between 0.093 and 0.099, whereas r2 fell between 0.959 and 0.965. These
results, coupled with those from the population dynamics domain, suggest that the program
is robust to data sets where values are missing at random.

The results on extrapolation tell a more complicated story. To begin, the reMSE scores
for the Ross Sea are generally uninformative. In each experimental condition, IPM underes-
timated the variance of phytoplankton in the test data by one or more orders of magnitude.
This result comes about because much of the test data resides in the tail of the bloom where
the values vary by relatively minor amounts. The effect is strong enough that it eclipses
any negative effect caused by the use of fewer training data and longer forecasts. To adjust
for this problem, we present the root mean squared error (RMSE), which can show trends
within a particular modeling task even though single values are less interpretable. Figure 4
shows the RMSE and the r2 scores of the models returned by IPM.

Both the r2 and RMSE scores show a decline in accuracy when IPM uses less training
data (and more testing data). Before discussing the anomalously low r2 score at 40%, we
look more closely into the steep increase in RMSE. The data are noticeably less dynamic
toward the end of the trajectories, so we expect that the bulk of the error surfaces in the

14Since the number of limiting factors would vary depending on the presence of limitation processes in the
model, the program would require either a means to support variable numbers of participants in a process
or several processes, each of which accounts for one possible combination of limiting factors. Adding a new
combining scheme provides a more elegant solution.



Mach Learn

Fig. 4 Forecast accuracy in RMSE (left) and r2 (right) for models of the Ross Sea with varying levels of
training data

Fig. 5 Forecast accuracy in RMSE of the 10% of the data immediately following the hold-out boundary
(left) and at the end of the Ross Sea trajectories (right)

downward slope of the phytoplankton bloom. To investigate, we examined the RMSE in
the 10% of the total data directly after the hold-out boundary, as well as the final 10% of
the trajectories. Figure 5 displays the results of these calculations. The graphs support our
conjecture. Although accuracy increases with the amount of training data, the change is
more pronounced when the test data fall directly after the hold-out boundary. Interestingly,
the location of the boundary also contributes to the anomalous score in Fig. 4.

Inspection of the simulated trajectories in Fig. 6 shows why the r2 score is low at the
40% boundary and why IPM failed to produce an accurate model. Notice that, on the test
set, the selected model predicts what appear to be constant values for both the phytoplank-
ton and nitrate concentrations. Examining the numerical values shows that minor variation
exists in the forecast for phytoplankton and leads to a nonzero, but low, r2. IPM’s poor per-
formance on this case stems from the position of the test boundary. Notice that the training
data contained little evidence that the nitrate concentration would increase in the future.
Consequently, IPM lacked a reason to prefer models that replenish nitrate over those that do
not. More generally, the system cannot anticipate what it has no reason to expect.

This analysis begs the question of why the r2 for the 50% boundary was much higher.
Referring to the phytoplankton data, the training set in this case ends at the 386th Julian day,
which occurs just after the peak of the bloom. When simulated, the induced model produces
trajectories quite similar to those in Fig. 6. The main distinctions are that this model accounts
for a larger region of phytoplankton decline and includes a minimal increase in the nitrate
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Fig. 6 Simulations of phytoplankton (left) and nitrate (right) from the model learned from the first 60% of
the available Ross Sea data. The boundary separating the training and testing data appears as a vertical line

concentration. These characteristics lead to a better r2 that is slightly offset by a worsening
of the RMSE.

As in the population dynamics domain, we also evaluate the plausibility of IPM’s mod-
els. To this end, Table 9 presents the process model that the program induced when given
the complete Ross Sea data set. With one exception, the presented structure provides a plau-
sible explanation of Ross Sea dynamics. In addition to the processes that we required, this
model includes mechanisms that account for the death of phytoplankton, the limitation of its
growth by resources, and the replenishment of iron. Notice that the model includes a grazing
process, but no mechanism for setting the grazing rate. Therefore, grazing has no effect on
the system and appears in Table 9 only because we forced its inclusion to reduce the search
space. In contrast, the limitation processes for nitrate, iron, and light were all optional, but
the removal of those for both light and nitrate has no effect on simulation. This finding
suggests that iron dominates the other limiting factors throughout the simulation and that
their inclusion is superfluous.15 Since IPM performs exhaustive search, we examined the
execution trace and found that the model lacking these processes has an RMSE of 0.0994
and an r2 of 0.9665. The differences are small enough to reflect variance in the parameter
estimation routine and suggest the need for a simplicity bias.

Although the above experiments did not generate any new insights about the underlying
ecosystem, research by Asgharbeygi et al. (2006), who used a previous version of IPM, dis-
covered plausible, new ecological knowledge. While developing a model that generalized
to unseen data, the authors found evidence that the nitrate-to-carbon ratio of phytoplankton
varies with the light availability. Standard ecological theory assumes that this ratio is con-
stant, but recent research by Needoba and Harrison (2004) supports the hypothesis that the
light regime directly affects the nitrate uptake of some phytoplankton species.

4.3 The Ringkøbing Fjord

For the third modeling task, we focused on water-level variation in Ringkøbing Fjord, a shal-
low estuary on the Danish west coast. Here the water level depends on three distinct aspects

15Substantial empirical evidence suggests that iron is the primary limiter of phytoplankton growth in the Ross
Sea (Olson et al. 2000; Martin et al. 1991). Unfortunately, we lack time series for that nutrient’s concentration,
but IPM allows its inclusion as a theoretical variable. Iron’s prominent role in the most accurate model lends
plausibility to the discovered structure and highlights the importance of supporting theoretical terms.
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Table 9 The model with the best fit for the Ross Sea data

model ross_sea;

variables phyto{p_species}, zoo{z_species}, nitrate{n_nutrient}, iron{fe_nutrient},

detritus{detritus}, light{light}, temperature{temperature}, ice{ice},

fetoc{fe_const}, beta{ratio}, phtyogr{p_grate}, phytogl{p_glimit},

zoor{z_rate}, ntoc{n_const};

observable phyto, nitrate;

exogenous light, temperature, ice;

process phytoplankton_growth;

equations phytogr = 0.299244 ∗ exp(0.06933 ∗ temperature ∗ (1 − ice) ∗ phytogl;

d[phyto, t,1] = phytogr ∗ phyto;

process phytoplankton_loss;

equations d[phyto, t,1] = −0.04 ∗ phyto;

d[detritus, t,1] = (1 − beta) ∗ 0.04 ∗ phyto;

process nitrate_uptake;

equations d[nitrate, t,1] = −1 ∗ 1/(ntoc ∗ 12.0107) ∗ phytogr ∗ phyto;

process iron_uptake;

equations d[iron, t,1] = −1 ∗ 1/(fetoc ∗ 12.0107) ∗ phytogr ∗ phyto;

process nitrate_limitation;

equations phytogl = nitrate/(nitrate + 0.232262);

process iron_limitation;

equations phytogl = iron/(iron + 0.000703);

process light_limitation;

equations phytogl = (1 − exp(−1 ∗ light/(16.0866/(1 + 7.44413 ∗
exp(light ∗ exp(1.089 − 2.12 ∗ log10(16.0866)))))));

process grazing;

equations zoor = 0;

d[zoo, t,1] = 0.320041 ∗ zoor ∗ zoo;

d[phyto, t,1] = −1 ∗ zoor ∗ zoo;

d[detritus, t,1] = (1 − beta) ∗ (1 − 0.320041) ∗ zoor ∗ zoo;

process nitrate_mixing;

equations d[nitrate, t,1] = (31 − nitrate) ∗ 0.0343555 ∗ (datamax(temperature) −
temperature)/(datamax(temperature) − datamin(temperature));

process remineralization;

equations d[detritus, t,1] = −0.0391038 ∗ detritus;

d[iron, t,1] = 0.0391038 ∗ (1/(fetoc ∗ 12.0107)) ∗ detritus;

process set_constants;

equations beta = 0.999981;

ntoc = 6.6;

fetoc = 146411;

initial conditions: phyto = 10.9999, nitrate = 26.8066, zoo = 1.5,

detritus = 0.01745, iron = 0.0006951

of the environment: the fresh water supply, the water exchange with the North Sea, and the
local wind currents. The first two factors dominate the variation in the level, with the second
being controlled through a 14 part gate. However, westerly wind currents also cause a rise in
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Table 10 A set of generic processes for modeling the Ringkøbing Fjord. Variable types not explicitly defined
are direct subtypes of number

generic process gate_influence_0;

variables GI {gate_influence};
parameters r[−100000,100000];
equations GI = r;

generic process gate_influence_1;

variables GI {gate_influence},GO{gate_open};
parameters r[−100000,100000];
equations GI = r ∗ GO;

generic process wind_forcing_0;

variables WI {wind_influence};
parameters r[−100000,100000];
equations WI = r;

generic process wind_forcing_1d;

variables WI {winf },WD{wdirection};
parameters r[−100000,100000];
equations WI = r ∗ WD;

generic process wind_forcing_1d_sin;

variables WI {wind_influence},WD{wind_direction};
parameters r[−100000,100000];
equations WI = r ∗ sin(WD ∗ 3.14159/180);

generic process wind_forcing_2dv_sin;

variables WI {wind_influence},WD{wind_direction},WV {wind_velocity};
parameters r[−100000,100000];
equations WI = r ∗ WV ∗ cos(WD ∗ 3.14159/180);

the level measured at the gate. Accurate modeling of the influences on estuary height would
be useful in a control system for the fjord’s gate.

This domain differs from the two ecological cases in that we have a partial explanation
of variation in fjord height:

ḣ = f (a)

A
(hsea − h + h0) + Qf

A
+ g(Wvel,Wdir ).

The equation expresses that the water level in the estuary, h, changes at a rate determined
by some function of the number of open gate parts, f (a), divided by the surface area of
the fjord, A. When the gates are opened, the difference between the water level in the open
sea, hsea , h, and a constant measurement error, h0, influence h. Additionally, fresh water
accumulates in the estuary, which causes an increase of Qf /A, while the velocity, Wvel ,
and direction, Wdir , of the wind alter the water level according to some unknown function
g(·). All variables except h and h0 are measured and considered exogenous to the model.
Thus IPM’s induction task consists of identifying which functions for f (·) and g(·) most
accurately model the change in the observed water level.

Table 10 lists 5 of the 16 candidate processes provided to IPM as background knowledge,
wherein all variable types are direct subtypes of number. The gate-influence processes fill
the role of f (·), specifying the magnitude of the effect produced by opening one or more
sections of the gate. The various forms of wind-forcing serve as components of g(·) and



Mach Learn

Fig. 7 The observed water level trajectory for the Ringkøbing Fjord between January 1 and December 10,
1999 and the simulated trajectory for the same period. The simulation comes from the induced model with
the best quantitative fit

vary based on their use of the direction and velocity of the wind. For instance, some forms
calculate the cosine or sine of the direction as alternatives to the angle, which appears in the
measurements.

The described library creates a search space containing over 65,000 model structures,
which is prohibitively large based on average computation time. To reduce this number,
we hand coded two types of constraints on model composition. First, along with the base
equation, we required both f (·) and g(·) to have constant terms, which could be set to
zero (see gate_influence_0 in Table 10). Second, we created groups of mutually exclusive
generic processes to reduce model complexity. For instance, an valid structure could have
at most one process that introduced a first-order effect of wind direction. Thus, only one
instantiation of wind_forcing_1d, wind_forcing_1d_sin, or the corresponding process for
cosine could occur within a model. These constraints reduced the search space to 1,280
candidate structures.

The data from the Ringkøbing Fjord are the same as those used by Todorovski (2003)
and consist of hourly measurements taken between January 1 and December 10 of 1999.
There are 8,254 records for each observed variable. In the following experiments, we used
the first 4,125 records for our initial evaluation and reserved the last section of the time
series for examining accuracy on a forecasting task. The model that IPM produced from the
initial examples had an reMSE score of 0.581, an r2 score of 0.421, and an RMSE of 0.052.
Figure 7 shows the model’s simulated trajectory. These values compare favorably with those
reported for the LAGRANGE system (Todorovski 2003), which, when trained on all 8,254
observations, produced a model with an RMSE of 0.059 and r2 of 0.434.
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Fig. 8 Results from
interpolation experiments in the
Ringkøbing Fjord domain

Table 11 Results from
simulating the full test set for the
Ringkøbing Fjord domain.
Values are reported for training
sets covering roughly one quarter
of a year (50%) to roughly one
half of a year (90%)

Training data reMSE RMSE r2

90% 1.694 0.110 0.004

80% 2.564 0.136 0.128

70% 2.357 0.130 0.293

60% 18.669 0.367 0.010

50% 37.545 0.520 0.009

As with the previous domains, we examined IPM’s performance on the interpolation
task, where reMSE provided the guiding measurement. Figure 8 shows the results, in which
the reMSE scores ranged between 0.594 and 0.781, and in which the r2 values fell between
0.379 and 0.545. Although there is no discernible trend in the reMSE scores, performance
in terms of r2 appears to improve when we allocate more data to the training set for each
fold. Due to an abundance of exogenous variables and the lack of unobserved variables in
this domain, one might expect less variation in the interpolation scores. However, assuming
an indirect relationship between the amount of knowledge one has and the amount of data
that one requires, these results suggest that our knowledge of this domain (e.g., the relevant
variables, the meaningful relationships) is far from complete.

For the extrapolation task, we trained IPM on 50%–90% of the first section of the data
and predicted the dynamics of the second section. Table 11 shows the results of these experi-
ments. In general, these numbers indicate that the models produced by IPM were unsuitable
for long-term forecasting. Moreover, the reMSE and RMSE scores degrade considerably as
we reduce the number of training data.

To some degree, the difficulty of the task tempers these results, but it also raises more
questions. Initially we extrapolated the fjord dynamics over half a year by giving each model
an initial water height and supporting it with exogenous variables throughout the time pe-
riod. Although this seems like a sufficient amount of input, any error in the water height
will remain uncorrected and can influence later predictions. With this possibility in mind,
we conjectured that routine corrections of the water height would produce more accurate
predictions.

To investigate this hypothesis, we altered the performance element of the extrapolation
task. Instead of forecasting the full time course from a single initial condition, we simulated
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Fig. 9 Extrapolation results for one hour, one day, and one week forward predictions. These graphs show
how accuracy changes with the amount of training data. The individual lines correspond to particular pre-
diction intervals. The reMSE (left) and r2 (right) scores show that the length of these intervals has a greater
effect on predictive accuracy than does the amount of training data

Fig. 10 Extrapolation results for one hour, one day, and one week forward predictions. These graphs show
how accuracy changes with the size of the prediction interval. All but one of the lines correspond to the
performance of a model induced from a fixed amount of training data (50%–90% of the first section of the
year). The remaining line shows the results of the baseline algorithm

each model so that, given a starting time and the necessary exogenous inputs, it would
produce predictions for one hour, one day, and one week in advance. We then compiled
the one-hour predictions into a single trajectory, the one-day predictions into another, and
the one-week values into a third. These resulting trajectories let us explore the effect of
forecast distance on predictive accuracy in this domain. To place the results in context, we
compared them to a naive baseline approach that predicts “no change” from the currently
observed value. To create these trajectories, we shifted the observed time series forward by
each lookahead interval.

Figures 9 and 10 show the results of these modified experiments. The plots in Fig. 9
suggest that the amount of training data has less influence on forecasting than the lookahead
distance. Although reducing the number of training examples tends to degrade performance,
we see nowhere near the trends shown Table 11. Instead, r2 values stay fairly constant across
a fixed prediction interval and, with the exception of the one-week case, the same is true for
reMSE.

Figure 10 presents a different view of the same results and includes the baseline case
for reference. In these graphs, one can better see how the length of the prediction interval
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affects accuracy. For one hour or one day predictions, any model will do. Interestingly,
even the baseline is sufficient for near-term estimates of the system dynamics. As the model
looks farther into the future, the picture gets hazier. In terms of reMSE scores, the baseline
performs poorly, but it generally scores better than the quantitative process models. The r2

scores indicate that, as the prediction interval increases, the baseline ceases to account for
the variability in water height as well as IPM’s models.

The results in the fjord domain reveal how strongly IPM’s utility depends on the knowl-
edge captured in the generic process library. Although we specified a rich search space, we
have little reason to believe that the defined library adequately represents the relationships
between water height and the effects of both the gating mechanism and the wind. IPM’s
poor forecasting performance in this domain reinforces our doubts and strongly suggests
that we lack sufficient knowledge of the relevant processes. Previous work by Todorovski
(2003) indicated that the library suffices for interpolation, but our extrapolation experiments
indicate a weakness. To accurately determine the root of these findings, we need to carry out
a detailed study that disentangles the effects of IPM’s various components.

In general, the experiments described in this section reveal interesting characteristics of
IPM. First, in some situations, the program can generate accurate models from severely
limited data. Second, as the experiments in the Ross Sea domain show, the system benefits
from a “representative sample”, which is a concept in need of better definition with respect to
time series. Third, modeling and domain knowledge is crucial for the accurate and plausible
explanation of a system’s dynamics. Our future research will explore these and other findings
in finer detail. In the next section, we outline a broader research agenda for inductive process
modeling as a new subfield of machine learning.

5 A proposed research agenda

Although our initial results with IPM suggest the viability of inducing process models from
observational data, they leave many questions unanswered. Before closing, we discuss some
issues that future work in the area should address and consider some promising approaches
that should be explored within this research agenda.

5.1 Representation

Our initial foray into process modeling uses a language of somewhat limited scope that sug-
gests numerous extensions. For instance, scientists often organize their models in terms of
systems and subsystems to increase manageability. Likewise, processes may be decomposed
into subprocesses, thereby creating a behavioral hierarchy that complements a scientist’s
structural one. In the same vein, scientists often organize related properties into groups that
belong to particular objects within the system. Since the task of inductive process modeling
includes the development of comprehensible models as a primary goal, researchers should
investigate methods of incorporating these common forms of knowledge organization into
the modeling framework.

Along with structural extensions to the representation, future work should explore meth-
ods for specifying and learning models with varying degrees of certainty. In particular, a
model might consist of both quantitative and qualitative processes (Forbus 1984), which
use proportionalities to describe relations between variables. In this framework, exponential
and logistic growth would map onto a single qualitative process stating that a population’s
growth rate is proportional to its size. Such models are appropriate for domains like microbi-
ology, where scientists often state their knowledge in qualitative form. Moreover, qualitative



Mach Learn

processes generally have fewer effective parameters than quantitative ones, which makes
them useful for situations with few observations. Many issues that arise with quantitative
models also occur with their qualitative analogs, so we also need work on this front.

5.2 Induction

In addition to dealing with representational issues, we need research that addresses the
traditional problems of model robustness and search efficiency. Overfitting the training
data can arise in nearly every learning task, and we need ways to guard against this ten-
dency, especially as we develop algorithms that generate more complex process models.
One avenue would examine analogs to methods that have proven successful in other in-
duction paradigms. These include techniques for early halting in decision-tree construc-
tion using minimum description length and methods for postpruning using cross validation.
Other techniques include ensemble methods like bagging, although this would require an
adaptation of bootstrap sampling to handle time-series data (Efron and Tibshirani 1993;
Härdle et al. 2003) and a means for generating a single, comprehensible model from the
ensemble (e.g., Domingos 1997). In addition, researchers should explore other defenses
against overfitting that are specific to process models.

While experimenting with IPM, we noticed that over 99% of the system’s runtime was
spent on parameter estimation, which suggests another avenue of research. Our current rou-
tines use variants of uninformed, gradient descent search. In contrast, search through the
space of model structures relies heavily on domain knowledge, so it seems reasonable that
one could use similar information to guide parameter estimation. For instance, our conver-
sations with scientists indicate that they concentrate more on the high-level features of the
trajectories (e.g., peak placement and height) than the residuals. Thus, developing methods
for characterizing these features could lead to a more rational and more efficient means of
tuning a model’s parameters.

Research on inductive process modeling should also lead to extensions of the general
search mechanism. For example, the current process-level constraints based on variable
types could be augmented by model-level constraints based on processes or process types,
so that a scientist can express both required and mutually exclusive processes. Knowledge
about the dimensional units of variables would also constrain model induction, as would the
introduction of knowledge that certain variables are conserved over time. Research should
also continue on Bradley et al.’s (2001) use of qualitative patterns to characterize certain
classes of equations. Other work should develop methods for learning new process forms.

An alternative approach to aiding model induction borrows an idea from work on theory
revision. Rather than constructing a process model from scratch, one can instead start with
a specific model and revise details to improve its fit to observations. Research on this topic
should explore ways to revise a specific model’s parameters, change the conditions on its
component processes, replace these processes with others that relate the same variables, and
even alter the basic structure of the initial model. Model revision will require the ability to
remove components as well as add them, but otherwise the same issues arise as in the basic
problem of process model induction.

Since dynamic systems may operate in several qualitatively different regimes, an induc-
tive process modeler should appropriately handle shifts among them. One approach would
involve identifying different regimes from time series and explaining the behavior of each
one separately. A second method relies on the ability to include conditions within processes.
One could extend the process modeler to learn these conditions so that processes are acti-
vated or inactivated as the system passes through each regime.
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5.3 Evaluation

Finally, future work should identify appropriate methods for evaluating process models.
Since the data composing the trajectories fail to meet the independent and identically dis-
tributed assumption made by many classification algorithms, standard evaluation techniques
such as cross validation must be adapted to better measure model performance. Addition-
ally, dynamic domains can pass through several operating regimes, which poses additional
difficulties for any evaluation method that samples from the original trajectory. Success-
ful modeling would require the observation of each of these regimes during training. The
approach to evaluation we used in our experiments addresses these issues, but researchers
should continue to explore other avenues.

Although these challenges should be met, the evaluation of process models must move
beyond an emphasis on predictive accuracy for the new paradigm to be useful to scientists.
Research must also take into account considerations of model robustness and explanatory
power. For example, biologists sometimes evaluate a model based on both its dependence
on specific parameters and its ability to match the general shape of observed trajectories.
Such evaluation will require moving beyond one-to-one comparisons of observations and
predictions to incorporate sensitivity analysis and to measure agreement with meaningful
trends in the data.

In pursuing this research agenda, we should follow the accepted standards for established
induction paradigms. Thus, papers should make explicit claims about a method’s abilities
and support them with experimental or theoretical evidence. Ideally, experimental studies
should include a mixture of natural domains to ensure relevance and synthetic domains
that let one vary dimensions of interest. However, the focus on familiarity and background
knowledge recommends studies that involve collaborations with domain scientists or en-
gineers, which remain uncommon in the machine learning literature. Finally, despite the
distinctive nature of process model induction, researchers should incorporate ideas from
other learning tasks and utilize existing methods as subroutines whenever sensible.

6 Concluding remarks

In this paper, we proposed a new problem for machine learning researchers that addresses
the induction of process models from observations. We defined this task as the construc-
tion of models that combine known component processes to explain the observed behavior
of continuous dynamical systems. We considered the challenges posed by process model
induction and the potential of established techniques to address them, concluding that it
demands research on new methods specialized to process modeling. We also presented an
initial algorithm of this sort and demonstrated its functionality in multiple domains, after
which we outlined a research agenda for future work on the topic.

Process models constitute a novel representation of knowledge that differs from the for-
malisms traditionally used in machine learning. These models are cast in the same terms as
many scientific and engineering models, which should make them more communicable to
practitioners in those fields. However, they have the same modularity as other formalisms
that support learning, and they provide a clear facility for incorporating domain knowl-
edge into learning mechanisms. We maintain that research on process model induction will
broaden the scope of machine learning in significant ways, and we encourage others to join
us in exploring computational methods that address this important new problem.
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