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In this paper, we present a framework for modeling dynamic systems that integrates the

knowledge-based theoretical approach to modeling with the data-driven empirical model-

ing. The framework allows for integration of modeling knowledge specific to the domain of

interest in the process of model induction from measured data. The knowledge is organized

around the central notion of basic processes in the domain and it includes models thereof
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as well as guidelines for combining models of individual processes into a model of the entire

observed system. The presented framework is applied to three tasks of modeling dynamic

environmental systems from noisy measurement data in the domains of population and

hydro dynamics. In all applications, the models induced with the framework can be used

both to accurately predict and explain the behavior of the observed dynamic systems.

© 2005 Elsevier B.V. All rights reserved.

. Introduction

cientists and engineers build mathematical models in order
o analyze and better understand the behavior of real world
ystems. Establishing an acceptable model of an observed sys-
em is a challenging task that occupies a major portion of the

athematical modeler’s work. It involves observations and
easurements of the system behavior under various condi-

ions, selecting a set of variables that are important for model-
ng, and formulating the model itself. The first milestone in the
rocess of modeling a real-world system is the choice of the
odeling formalism. Ordinary differential equations (ODEs)

re one of the most widely accepted formalisms for modeling
f dynamic systems, i.e., systems that change their state over
ime (Gershenfeld, 1999). In this paper, we deal with inducing

odels of dynamics systems based on ODEs from observed
ehavior of the selected system variables.

There are two main aspects of formulating a model of
real-world system. First, an appropriate model (equations)

tructure has to be established (the structure identification

problem). Second, acceptably accurate values for the parame-
ters are to be determined (the parameter estimation problem).
Methods for system identification (Ljung, 1993) focus mainly
on solving the parameter estimation problem and make one
of the following two assumptions. They either assume that
the structure of the model is provided by a human expert, or
assume that the structure is chosen from some general well-
known class of model structures, such as linear equations,
polynomials, or neural networks.

Formulating a model based on the assumption that the
structure identification problem is solved by a human expert is
known as the theoretical or knowledge-driven approach. Fol-
lowing this approach, the expert first identifies the processes
that govern the behavior of the observed system. Then, using
domain-specific knowledge about the identified processes, the
expert writes down a proper structure of the model equations.
In contrast to the theoretical approach, the empirical approach
adopts a data-driven trial-and-error paradigm. The expert first
chooses a general class of structures (such as linear or poly-
nomial) that he/she believes to be adequate, fits its constant
∗ Corresponding author. Fax: +386 1 425 1038.
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parameters, and checks how well the simulation of the model
matches the observed data. If the match is not close enough,
the procedure is repeated until an adequate model is found. A
very limited portion (if any) of existing domain-specific knowl-
edge is used in the modeling process.

In this paper, we aim at integrating the theoretical and em-
pirical approaches to modeling. We present a modeling frame-
work that integrates domain-specific knowledge in the pro-
cess of data-driven induction of models based on ODEs. The
knowledge is used to constrain the space of candidate mod-
els considered in the induction process. Before we can use the
knowledge, we have to encode it—in the first part of the paper,
we present a formalism for encoding knowledge in a form of
taxonomy of basic processes and their models. The encoded
knowledge includes also guidelines for composing models of
the whole system from the models of the basic processes that
govern its behavior. We show that this kind of knowledge,
available in many textbooks on ecological modelling, can be
efficiently transformed to grammars that specify the space of
candidate models and can be used to guide the induction pro-
cess. Our framework then uses the grammar-based equation
discovery method Lagramge (Todorovski and Džeroski, 1997)
to heuristically search through the space of candidate models,
match them against data, and find the one that fits the data
best. We illustrate the generality and usefulness of the frame-
work by applying it to three tasks of modeling environmental
dynamic systems from noisy measurement data.

oces

variables of the observed system, while the model of a ba-
sic process specifies the equations used to model its influ-
ence. Our formalism for encoding domain-specific knowledge
targets knowledge about what are the basic processes in the
domain of interest as well as what models of their influence
on the system behavior are typically used by domain experts.
The encoded knowledge also includes guidelines for combin-
ing the models of the individual basic processes into a single
model of the entire observed system.

We will illustrate the use of the formalism on the exam-
ple domain of population dynamics (Murray, 1993). Popula-
tion dynamics studies the structure and dynamics of popu-
lations, where each population is a group of individuals of
the same species sharing a common environment. We con-
sider models of the dynamic change of population concentra-
tions (or densities) that take the form of ordinary differential
equations.

2.1. Taxonomy of basic process classes

The knowledge about basic processes in the domain of interest
is encoded in the taxonomy of process classes. Fig. 1 presents
an example taxonomy of process classes in the population dy-
namics domain. At the highest level of the taxonomy, we dis-
tinguish between basic processes that involve a single species
or an inorganic nutrient and processes that represent interac-
tions between two or more species and/or nutrients. Down the
The paper is organized as follows. We present the
formalism for encoding domain-specific modeling knowl-
edge in Section 2. Section 3 presents the automated
modeling framework, which is then applied to three tasks
of inducing models of environmental dynamic systems. We
present the results of these applications in Section 4. Section
5 puts our work in the context of related research. Finally, Sec-
tion 6 concludes the paper with a summary and directions for
further research.

2. Encoding modeling knowledge

Models of dynamic systems are often stated in terms of ba-
sic processes that govern the behavior of the observed sys-
tem. Each basic process influences the change of one or more

Fig. 1 – A taxonomy of classes of basic pr
 ses in the population dynamics domain.

taxonomy tree, the process classes become more specific. For
example, there are two kinds of processes that involve a sin-
gle species: growth of a population or its decay. The leaf nodes
represent particular modeling alternatives typically used by
domain experts to model individual processes, such as expo-
nential or logistic growth.

Table 1 presents the formalization of several process
classes from the population dynamics. Note that we present
the complete formalization of the process classes from Fig. 1
in Appendix A. The first process class Growth represents pro-
cesses of species growth in the absence of any interaction with
other species and inorganic nutrients. It has two sub-classes,
specifying two models of growth. The Exponential growth class
specifies unlimited exponential growth of the observed popu-
lation. This kind of growth is inappropriate in many real-world
cases, since the environment typically has a limited carrying
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Table 1 – Formalization of some of the population
dynamics process classes from the taxonomy presented
in Fig. 1

Process class growth(Population p)
Process class exponential growth is Growth

Expression const(growth rate, 0, 1, Inf)×p
Process class Logistic growth is Growth

Expression const(growth rate, 0, 1, Inf)×p×
(1 − p/const(capacity, 0, 1, Inf))

Process class decay(Population p)
Process class exponential decay is Decay

Expression const(decay rate, 0, 1, Inf)×p

Process class Feeds on(Population p, set of concentration cs)
Condition p /∈ cs
Expression p×

∏
c∈cs

c

capacity for the given species. In such cases, the alternative
Logistic growth model is more appropriate.

The definition of each process class consist of three parts,
which concerns variables, conditions on the variables and the
equation templates used to model processes of the class.

First, we specify which types of variables are involved in
processes from the given class. For example, each process in
the Growth and Decay process classes involves a single vari-
able p of type population. The processes in the Feeds on class
involve one population variable p and a set of variables cs of
type concentration, which can be either a population or an
inorganic nutrient. The declarations of variable types are in-
herited through the taxonomy of process classes: the Expo-
nential growth class inherits from the parent class Growth the
fact that growth processes involve a single variable of type
population.

The second part of the process class definition specifies
constraints on the variables involved in a process of the given
class. The condition p /∈ cs in the Feeds on process class speci-
fies that a population cannot feed (predate) on itself.

The third part of the process class definition specifies the
model (i.e., equation) structure used to model the influences
of processes of the given class. The model structure is based
on variables involved in the process and generic constant pa-
rameters. The values of the generic constant parameters are
not known and are to be fitted against measurement data.
The term const(name, lower bound, initial, upper bound) is used
t
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Table 2 – Schemes for combining the models of basic
population dynamics processes into a model of the
entire system

Combining scheme Population dynamics(Inorganic i)
di/dt = −

∑
food,f∈food

const( , 0, 1, Inf)×Feeds on(p, food)

Combining scheme Population dynamics(Population p)
dp/dt = Growth(p) − Decay(p) +

∑
food

const( , 0, 1, Inf)×
Feeds on(p, food) −

∑
pred,food,p∈food

const( , 0, 1, Inf) ×
Feeds on(pred, food)

processes into a model of the entire system. Table 2 presents
two combining schemes for building population dynamics
models.

The first combining scheme specifies how to build the
equation for the rate of change of an inorganic nutrient con-
centration i, which is represented by the time derivative di/dt

of i. The change of i is negatively influenced by all the Feeds on
interactions in which i is being consumed by an arbitrary pop-
ulation p. The term Feeds on(p, i) denotes the model of the
Feeds on process influence. The

∑
aggregation function is

used to sum up the influences of all such processes.
The second combining scheme specifies how to combine

individual process models into a model of the rate of change
of a population concentration p. The first line specifies that
the time derivative of p increases with the population growth
Growth(p) and decreases with its decay Decay(p). Feeds on pro-
cesses that involve p as a predator (or consumer) positively
influence the rate of change of p, while the Feeds on processes
where p is involved as a prey negatively influence its rate of
change. Again, influences of these processes are summed up,
as shown in Table 2.

3. The modeling framework

The knowledge we encoded so far is independent of the partic-
ular modeling task at hand—it allows for modeling of an arbi-
o specify a generic constant parameter: its name, as well
s lower bound, default, and upper bound values. For ex-
mple, the Exponential growth model involves a single non-
egative (note that a lower bound of 0 as well as infinite
pper bound are specified) constant parameter that repre-
ents the growth rate with the default value of 1. The de-
ault value of the constant parameter is used as its initial
alue by the iterative non-linear method for parameter fitting,
hich matches the model structure against measured data

nd find the values of the model parameters that fit the data
est.

.2. Combining scheme

he knowledge representation formalism also encodes the
cheme that is used to combine the models of individual basic
trary system in the population dynamics domain. Before using
the knowledge for modeling of a particular population dynam-
ics system, we have to specify the modeling task. The speci-
fication includes system variables and their types along with
the processes (and their process classes) that are expected to
influence the system behavior. Given the modeling task speci-
fication, the encoded knowledge can be then used to generate
a grammar that specifies the space of candidate model struc-
tures for the observed system. The grammar-based equation
discovery method Lagramge is then used to search through
the space of candidate models and find the one that fits the
measured data best. Fig. 2 gives a schematic representation of
this modeling framework.

Table 3 gives an example of a modeling task specification
for a simple ecosystem with three system variables nut, phyto,
and zoo representing the concentrations of an inorganic nu-
trient and two populations, one of phytoplankton and one
of zooplankton, respectively. The first two (growth and de-
cay) processes specify that the populations of phytoplankton/
zooplankton tend to increase/decrease in the absence of any
interactions with the environment and other species. The
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Fig. 2 – An automated modeling framework based on the integration of domain-specific modeling knowledge in the process
of equation discovery.

following two Feeds on processes specify that phytoplankton
consumes the inorganic nutrient and that zooplankton feeds
on phytoplankton.

The transformation of the modeling task specification to
a grammar proceeds in a top-down manner. It starts with
the starting symbol and assigns productions to it, then pro-
ceeds with other nonterminal symbols. Nonterminal symbols
in the grammar denote process classes, while the alternative
productions for each nonterminal symbol specify possible ex-
pressions for modeling the corresponding process class. The
starting symbol of the grammar combines the expressions for
individual processes into candidate models of the whole sys-
tem, according to the combining scheme.

For example, consider the aquatic ecosystem example from
Table 3. The start symbol uses the combining schemes from
Table 2 to compose a model of the whole ecosystem (see the
first production in the grammar from Table 4). The right hand
side of the production for the starting symbol builds a system
of three differential equations, one for each variable of the ob-
served ecosystem. The second equation (for the time deriva-
tive of phyto) is built by summing up the growth process for the
phyto population, i.e., Growth(phyto), the phyto decay process (0,
since none of them are specified), the consumption process
where phyto is involved as consumer, i.e., Feeds on(phyto, {nut}),
and the predator-prey process where phyto has the role of prey,
i.e., Feeds on(zoo, {phyto}). The productions for the other non-

ables, guides the search. Further details about Lagramge can
be found in (Todorovski and Džeroski, 1997; Todorovski, 2003).

4. Modeling environmental dynamic
systems

We applied our framework to three tasks of modeling dynamic
systems from real-world data. Two tasks from the population
dynamics domain have been already addressed by other equa-
tion discovery methods. The third task is from the domain
of hydrodynamics. The evaluation criteria used in these ex-
periments are predictive accuracy (as measured by root mean
squared error, RMSE) and comprehensibility of the discovered
models as evaluated by domain experts.

4.1. Modeling algal growth in the Lagoon of Venice

The Lagoon of Venice measures 550 km2, but is very shallow,
with an average depth of less than 1 m. It is heavily influ-

Table 4 – The grammar specifying the candidate models
for modeling the simple aquatic ecosystem presented in
Table 3

Start →

terminal symbols are built according to the specification of the
taxonomy of process classes from Table 1.

The grammar from Table 4 generates a set of candidate
model structures for modeling the simple aquatic ecosystem.
Lagramge can heuristically search through this space and find
the model that fits the data best. The Lagramge algorithm
employs an iterative non-linear optimization method (Bunch
et al., 1993) to fit the constant parameters of the candidate
model structures. Heuristic function based on the discrepancy
between simulated and observed values of the system vari-

Table 3 – A task specification used for modeling a simple
aquatic ecosystem consisting of two consumption
interactions between three populations of inorganic
nutrient, phytoplankton, and zooplankton

System variable Inorganic nut
System variable Population phyto, zoo

Processes Growth(phyto), Decay(zoo)
Processes Feeds on(phyto, {nut}), Feeds on(zoo, {phyto})
Time deriv(nut) = −const[ : 0 : 1 :]×Feeds on phyto nut;
Time deriv(phyto) = Growth phyto − 0 + const[ : 0 : 1 :]

×Feeds on phyto nut − const[ : 0 : 1 :]×Feeds on zoo phyto;
Time deriv(zoo) = 0 − Decay zoo + const[ : 0 : 1 :]

×Feeds on zoo phyto

Feeds on phyto nut → Unsaturated feeds on phyto nut
Feeds on phyto nut → Saturated feeds on phyto nut
Unsaturated feeds on phyto nut → phyto×nut
Saturated phyto nut → phyto×nut/

(nut + const[saturation rate : 0 : 1 :])

Growth phyto → Exponential growth phyto
Exponential growth phyto → const[growth rate : 0 : 1 :]×phyto
Logistic growth phyto → const[growth rate : 0 : 1 :]

×phyto×(1 − const[capacity : 0 : 1 :])

Feeds on zoo phyto → Unsaturated feeds on zoo phyto
Feeds on zoo phyto → Saturated feeds on zoo phyto
Unsaturated feeds on zoo phyto → zoo×phyto
Saturated zoo phyto → zoo×phyto/

(phyto + const[saturation rate : 0 : 1 :])

Decay zoo → Exponential decay zoo
Exponential decay zoo → const[decay rate : 0 : 1 :]×zoo
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enced by anthropogenic inflow of nutrients—7 mio kg/year of
nitrogen and 1.4 mio kg/year of phosphorus (Bendoricchio
et al., 1994). These (mainly nitrogen) loads are above the
Lagoon’s admissible trophic limit and generate its dystrophic
behavior, which is characterized by excessive growth of algae,
mainly Ulva rigida. Four sets of measured data were available
(Coffaro et al., 1993) for modeling the growth of algae in the
Lagoon. The data were sampled weekly for slightly more than
one year at four different locations in the Lagoon. Location 0
was sampled in 1985/1986, locations 1, 2, and 3 in 1990/1991.
The sampled quantities are nitrogen in ammonia NH3, nitro-
gen in nitrate NO3, phosphorus in orthophosphate PO4 (all
in [�g/l]), dissolved oxygen DO (in percentage of saturation),
temperature T (◦C), and algal biomass B (dry weight in [g/m2]).

Previous experiments with automated modeling of al-
gal growth in the Lagoon of Venice with equation discovery
(Kompare and Džeroski, 1995) used the GoldHorn method
(Križman, 1998). Since GoldHorn could not find an accurate
model based on the set of measured variables, two additional
variables were calculated and added to the set of variables.
These are the growth and mortality rates, which are known
quantities in ecological modeling and were calculated accord-
ing to the simplified version of an existing model of algal
growth in the lagoon proposed by (Coffaro et al., 1993). From
the extended set of variables and data measured at Location
0, GoldHorn discovered a difference equation for predicting
biomass that, due to the large measurement errors (estimated
a
p
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d
d
t

g
s
g
w
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t
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Table 5 – A task specification used for modeling the
growth of algae biomass in the Lagoon of Venice

Variable Inorganic temp, DO, NH3, NO3, PO4

System variable Population biomass

Process Growth(biomass) biomass growth
Process Decay(biomass) biomass decay
Process Feeds on(biomass, *) biomass grazing

symbol *). Since ecologists did not know the limiting factors
for biomass growth, they let Lagramge search for the model
that would reveal them.

The experiments with Lagramge were performed using a
grammar automatically built from the task specification in
Table 5 and the library of modeling knowledge outlined in
Section 2 and completely specified in Appendix A. The gram-
mar generates 6248 candidate model structures, among which
the following model matches the measured data on the Loca-
tion 0 best:

dbiomass/dt = 6.17×10−5 biomass

(
1 − biomass

1.80

)

+ 3.01×10−4 biomass DO
NO3

NO3 + 6.28

− 0.0319 biomass.

The model for Location 0 tells us that the limiting factors for
the biomass growth of the Ulva rigida in the lagoon are dis-
solved oxygen (DO) and nitrogen in nitrate (NO3).

Furthermore, Lagramge discovered another model from
the Location 2 data:

dbiomass/dt = 4.79×10−5 biomass

(
1 − biomass

0.844

)

+ 0.406 biomass(1 − e−0.216temp)(1 − e−0.413DO)

× NH3

NH3 + 10
− 0.0343 biomass.

F h in
t tion
t the level of 20–50%), does not fit the data perfectly, but it still
redicts most of the peaks and crashes of the biomass concen-
ration correctly (Kompare and Džeroski, 1995). Although the
quation model involves the mortality rate, as calculated by
omain experts, the model itself is still a black-box model that
oes not reveal the limiting factors for the biomass growth in
he lagoon.

The task specification of modeling algal growth in the La-
oon of Venice, given in Table 5, lists the types of the ob-
erved variables and the processes that are important for the
rowth of algae (and their biomass) in the lagoon. Note that
e are only interested in a model of the biomass growth,

o biomass is the only system variable. The specification of
he biomass grazing process leaves the nutrient parameter
f the Feeds on process class unspecified (denoted using the

ig. 3 – Simulations of the two models of the biomass growt
o the measured biomass concentration (left-hand side: Loca
This model tells us that the limiting factors for the biomass
growth are temperature (temp), dissolved oxygen (DO), and ni-
trogen in ammonia (NH3). Although the two models are not
identical, they both identify dissolved oxygen and nitrogen
based nutrients to be limiting factors for biomass growth. The

the Lagoon of Venice, discovered by Lagramge, compared
0, right-hand side: Location 2).
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differences between the two models may be due to the fact
that the measurements were taken during two different time
periods.

In the experiments with the data measured at the other two
locations (1 and 3), Lagramge did not find an accurate model
of the biomass growth. Note that these results still compare
favorably with the results obtained by GoldHorn, which dis-
covered an acceptable model for Location 0 only.

Fig. 3 compares the measured and simulated values of
the biomass change over time for both models. We ran long-
term simulations of the models from the initial value of the
biomass without restarting the simulation process at each
measurement point. For values of all other variables needed
during the simulation, we used the measurement at the
nearest time point in the past. As in the GoldHorn exper-
iments, due to the high measurement errors (of the order
20–50%), the models discovered by Lagramge do not fit the
measured data perfectly. However, they correctly predict most
of the peaks and crashes of the biomass. These events are
more important to ecologists than the degree of fit. Note an
important advantage of these models over the one discov-
ered by GoldHorn. While the GoldHorn model is black-box,
the models discovered by Lagramge identify the most im-
portant limiting factors for biomass growth in the Lagoon of
Venice.

Table 6 – A specification of the modeling the
phytoplankton growth in Lake Glumsø task

Variable Inorganic temp, nitro, phosp
Variable Population zoo
System variable Population phyto

Process Decay(phyto) phyto decay
Process Feeds on(phyto, *) phyto grazing
Process Feeds on(zoo, phyto) zoo grazing

The task of modeling phytoplankton growth in Lake
Glumsø, as specified in Table 6, lists the types of the ob-
served variables and the processes that are important for the
growth. Note that the specification of the phyto grazing pro-
cess leaves the nutrient parameter of the Feeds on class un-
specified (denoted using the symbol *). This is because the ex-
perts did not know the limiting factors for the biomass growth,
and therefore we let Lagramge search for the model that would
identify them.

The experiments with Lagramge were performed using
a grammar automatically built form the task specification
and the library of modeling knowledge outlined in Sec-
tion 2. The grammar generates 496 candidate model struc-
tures. Among these, the model with the minimal value
of the Lagramge heuristic function on the measured data
was:

˙phyto = 0.553 temp
phosp

0.0264 + phosp
− 4.35×phyto

− 8.67phyto zoo.

The structure of the discovered equation tells us that phos-
phorus is a limiting factor for phytoplankton growth in the
lake and that the growth is temperature dependent.

Note that the same model was already discovered by
Lagramge (Todorovski et al., 1998) using a hand-crafted gram-
mar based on the human expert knowledge about modeling
population dynamics. However, there is an important differ-
4.2. Modeling phytoplankton growth in Lake Glumsø

Lake Glumsø Jørgensen et al. (1986) is situated in a sub-
glacial valley in Denmark. It is shallow with average depth
of about 2 m and its surface area is 266,000 m2. For several
years, prior to the measurements discussed here, it was re-
ceiving mechanically-biologically treated waste water from
a community with 3000 inhabitants and a surrounding area
which was mainly agricultural with almost no industry. The
high nitrogen and phosphorus concentration in the treated
waste water had caused hypereutrophication. The lake con-
tained no submerged vegetation, probably due to the low
transparency of the water and the oxygen deficit at the
bottom.

Domain experts considered the concentrations of phyto-
plankton (phyto), zooplankton (zoo), soluble nitrogen (nitro),
soluble phosphorus (phosp), and the water temperature (temp)
relevant for modeling the phytoplankton growth. These vari-
ables were measured at 14 distinct time points over a period
of two months. This amount of measured data itself was in-
sufficient for modeling, so additional processing was applied
to obtain a suitable data set (Todorovski et al., 1998). First, dot-
ted graphs of the measurements were plotted and given to
three human experts to draw a curve that, in their own opin-
ion, described the dynamic behavior of the observed variable
between the measured points. A properly plotted expert curve
can be regarded as an additional source of reliable data. Curves
drawn by the human experts were then smoothed with Bezier
splines. Finally, three data sets were obtained by sampling the
splines derived from each of the three human experts’ approx-
imations at regular time intervals with time step h = 0.03215
day. The data set provided by the first expert was used for the
experiments.
ence between the experiment performed here and the one
performed with the previous version of Lagramge. In the pre-
vious study, we were not able to specify bounds on the val-
ues of the constant parameters, so the output of Lagramge
was manually post-processed in order to filter out the equa-
tions with invalid values of the constant parameters (e.g.,
negative growth or saturation rate). In the experiment pre-
sented here, there is no need for this additional step, since
the knowledge about the valid values of the constant pa-
rameters was encoded within the library of domain-specific
knowledge.

4.3. Modeling the water level variation in Ringkøbing
fjord

In the last series of experiments, we illustrate that the pro-
posed formalism allows for partial model specification. In such
a case, a human expert specifies only some parts of the model
structure and leaves others unspecified or partly specified. Our
framework can be then used to determine both the structure
and the parameters of the unspecified parts.

An example of such a task is modeling water level variation
in Ringkøbing fjord, a shallow estuary located at the Danish
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Table 7 – Formalization of the partially specified model
of the water level variation in the Ringkøbing fjord and
specification of the modeling task

Function class Salt water drive(Opening a, Level h sea, Level h,
Surface A

Expression (h sea − h + const[h 0 : −5 : 0.1 : 5])

Function class Fresh water flow(Flow Q f, Surface A)
Expression Q f/A

Combining scheme Water level change(Level h)
time deriv(h) = (F(a)/A)×Salt water drive(a, h sea, h, A) +

Fresh water flow(Q f, A) + G(W vel, W dir)

Variable Opening a
Variable Level h sea
System variable Level h
Variable Surface A
Variable Flow Q f
Variable Velocity W vel
Variable Direction W dir

Function F(a) flow friction
Function G(W vel, W dir) wind forcing

west coast, where it experiences mainly easterly and westerly
winds.1 Wind forcing causes large short term variation of the
water level (h) measured at the gate between the estuary and
the North Sea. Domain experts specified the following par-
tial model for the temporal variation of the water level in the
estuary:

ḣ = f(a)
A

(hsea − h + h0) + Qf

A
+ g(Wvel, Wdir).

The water level response to the wind forcing, dependent on
both wind speed (variable Wvel, measured in [m/s]) and di-
rection (Wdir, measured in degrees), is modeled by an un-
known function g. Apart from wind forcing, the water level is
dominated by the fresh water supply (Qf, measured in [m3/s]).
When the gate is closed, fresh water is accumulated in the es-
tuary causing a water level rise of Qf/A, where A is the surface
area of the estuary measured in squared meters. During peri-
ods when the gate is open, the stored fresh water is emptied
in the North Sea. The gate is also opened in order to maintain
sufficient water level in the estuary, in which case the water
rise is driven by the difference between the water level in the
open sea (variable hsea, measured in meters), the water level
in the estuary (h, measured in meters), and the constant pa-
rameter (h0). The flow is restricted by the friction of the flow,
modeled by an unknown function f of the number of gate parts
being open (a). Namely, the gate consists of 14 parts and allows
f
n
b
v

o
p
p
w
t

Table 8 – Formalization of the modeling alternatives for
the unspecified parts of the model of the water level
variation in the Ringkøbing fjord

Function class F(Opening a)
Function class F 0 is F

Expression const[ : −5000 : 0.1 : 5000]
Function class F 1 is F

Expression polynomial({a}, const[ : −5 : 0.1 : 5], 5)

Function class G(Velocity W vel, Direction W dir)
Function class G 0 is G

Expression const[ : −5000 : 0.1 : 5000]
Function class G 1 is G

Expression Polynomial({W vel, W dir}, const[ : −5 : 0.1 : 5], 5)
Function class G 2 is G

Expression Polynomial({W vel, sin(W dir), cos(W dir)},
const[ : −5 : 0.1 : 5], 5)

In order to apply our framework to the task of model com-
pletion, we first encode the partial specification within our
formalism. The formalization of the partial model specifica-
tion from Table 7 follows the partial model formula proposed
by the domain experts. The formula is decomposed into two
building blocks following the explanation of the partial model
specification.2

In the second step, we formalize the modeling alterna-
tives for each of the unspecified parts of the model, i.e., the
f and g functions. In the experiments, we use simple con-
stant and polynomial models due to the lack of additional
domain knowledge. The modeling alternatives used in the ex-
periments are presented in Table 8. The first modeling alter-
natives F 0 and G 0 for f and g are the simplest possible mod-
els, i.e., constants within the interval [−5000, 5000] with the
initial values of 0.1. The next two alternatives (F 1 and G 1)
are polynomials of the appropriate system variables with con-
stant parameters within the interval [−5, 5] (and initial values
of 0.1). The maximal degree of the polynomials is five. Finally,
we used one additional modeling alternative for the g function
(G 2) that replaces the wind direction value (that represents
angle) with the sine and cosine transformation thereof in the
polynomial.

The data about the observed variables is collected by hourly
measurements of all the observed variables within the pe-
riod from 1st of January to 10th of December 1999. We used
the task specification presented in Tables 7 and 8 to induce a
or opening some parts and closing others. The value of A is
ot directly observed, but a function that calculates A on the
asis of h is provided, so A can be also treated as observed
ariable.

1 The task was used as an exercise within a post-graduate course
n modeling dynamic systems organized in 2000. Since the Web
age of the course is no longer available, we cannot provide a
roper reference to the original task specification. Note also that
e could not consult domain experts and therefore could not ob-

ain expert comments on the induced models.
model from the measurements with Lagramge. We performed
three experiments. In the first, we used the F 0 and G 0 mod-
eling alternatives, in the second we used the F 1 and G 1

modeling alternatives, and in the third we used theF 1 andG 2

modeling alternatives. In order to evaluate the benefit of using
partial model specification, we performed one additional ex-
periment in which no knowledge about model structure was

2 In order to specify different alternatives for modeling flow fric-
tion F and wind forcing G, we introduce a taxonomy of function
classes. The definitions of function classes are the same as defi-
nitions of process classes. We distinguish between functions and
processes because the former do not represent processes from the
domain; in this case, we use them to specify alternative models for
the individual building blocks.
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Table 9 – The root mean squared errors (RMSE,
estimated on both training data and using 10-fold
cross-validation) of the four water level variation models
induced by Lagramge with (three first rows) and without
(last row) using the partial model specification provided
by the domain experts

Task specification Training
RMSE

Cross-validated
RMSE

#CMS

F 0 + G 0 0.0848 0.106 1
F 1 + G 1 0.0655 0.0931 378
F 1 + G 2 0.0585 0.0903 2184

Polynomial 0.0556 2.389 2801

The last column gives number of candidate model structures
(#CMS) considered during the search.

used. In this last experiment, we used a polynomial model
of the water level change in the fjord. We used 10-fold cross-
validation for estimating the RMSE of the induced models.

Table 9 summarizes the results of the experiments. The
best cross-validated performance is gained using the partial
model specification provided by the experts in combination
with the F 1 and G 2 modeling alternatives for the unspeci-
fied parts of the structure. Lagramge proposed the following
models for f and g:

f(a) = 5 + 5a + 5a2 + 5a3 − 1.01a4

g(Wvel, Wdir) = − 0.00137 − 0.0106 cos Wdir

+ 0.218 cos Wdir sin Wdir

+ 0.0106Wvel cos Wdir sin Wdir

− 0.0128W2
vel cos Wdir sin Wdir

− 0.000428W3
vel cos Wdir sin Wdir.

The graph on the left-hand side of Fig. 4 shows the simulation
of this model compared to the measured water level in the
Ringkøbing fjord. We ran a long-term simulation of the model
from the initial value of the water level without restarting the
simulation process at any measurement point. For the values
of all other variables needed during the simulation, we used
the measurement at the nearest time point in the past.

Note that the long-term simulation of the model follows
the general pattern of water level variation. However, despite

Table 10 – The RMSE and correlation coefficient (r) for the
short-term (one hour and one day) prediction of the
water level in the Ringkøbing fjord compared to the
RMSE and r of the simulation over the whole
observation period

Prediction/simulation
period

RMSE r

1 h 0.0168 0.976
1 day 0.0425 0.845

Whole observation period 0.0585 0.659

g(Wvel, Wdir)). The graph on the right-hand side of Fig. 4 shows
the ratio of the gate opening and the wind influences on the
water level change in the Ringkøbing fjord. The low magnitude
of the ratio shows that the influence of the wind prevails over
the influence of the gate opening most of the time. The only
exceptions occur in the period from 80 to 100 days from the
beginning of the measurement, that is, the end of March and
beginning of April 1999.3

The polynomial model of the water level variation that ig-
nores the partial specification of the model performs best on
the training data. However, the model’s small RMSE is due to
the overfitting of the training data, since the cross-validated
RMSE of this model (2.389) is much larger than the cross-
validated RMSE of the models that follow the partial structure
specification.

In sum, the Ringkøbing fjord experiments show the capa-
bility of our framework to address modeling tasks in which
human experts can partially specify the model structure and
leave some of its parts unspecified.

5. Related work

The presented modeling framework follows the paradigm
of compositional modeling (Falkenheiner and Forbus, 1991),
an automated approach to building qualitative models from
observations in presence of domain-specific modeling knowl-
the agreement with the general trend and relatively low error
(RMSE of 0.0585), the model fails to precisely capture the short-
term (hour) changes of the water level in the fjord. To test the
short-term prediction power of the model, we performed two
additional simulations, which we restarted with the true mea-
sured water level values at every hour and at every day (24 h).
Table 10 presents the results of this analysis. They show that
the model is also suitable for precise short-term prediction of
the water level in the Ringkøbing fjord. Using the model, the
water level in an hour can be predicted with an average error
of 0.0168, which is below 2 cm and a correlation coefficient of
0.98.

Since the model induced by Lagramge follows the partial
structure specification provided by the human experts, fur-
ther analysis of the model can be performed. For example, we
can compare the influence of the gate opening (modeled by
f(a)(hsea − h + h0)/A) with the effect of the wind (modeled by
edge. In the compositional modeling, knowledge is orga-
nized as a library of model fragments. Given a modeling task
specification (or scenario), compositional modeling methods
compose a set of appropriate fragments into a model that
is suitable for modeling the observed system. The obtained
model is evaluated by qualitative simulation (Kuipers, 1994).
The compositional modeling approach is mainly applied to the
tasks of building qualitative models. For example, authors of
(Coghill et al., 2002) apply this approach to the task of inducing
qualitative models of chemical reaction pathways from noisy
measurement data.

Although the concepts introduced within the QR area are
also relevant for automated building of quantitative models of
real-world systems, this idea has not been widely explored. A
notable exception is the Pret reasoning system for automated
modeling of dynamic systems (Bradley et al., 2001), which

3 Note again that, unfortunately, we could not obtain expert com-
ments on these results.
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Fig. 4 – Simulation of the water level variation model induced by Lagramge compared to the measured water level
(left-hand side) and the ratio of the gate opening and the wind influences on the water level change in the Ringkøbing fjord
as modeled by Lagramge.

employs two kinds of knowledge. The first is domain-specific
knowledge in the form of “conservation rules”, such as Kir-
choff’s law in the domain of electrical circuits, which specifies
that the sum of input and output currents at any observed
point in the circuit is zero. Similarly, the force balance rule in
the mechanics specifies that the sum of forces at any observed
coordinate of the mechanical system is zero. These rules are
more general than domain knowledge about model fragments
used in compositional modeling approaches, and constrain
the space of possible models much less. This kind of knowl-
edge more appropriate for modeling in engineering domains
such as electrical circuits and mechanics. Knowledge about
basic processes in the domain of interest (that is more ap-
propriate for building explanatory models in the biological or
chemical domains) can not be fitted within Pret’s framework.

The approach presented here builds up on previous work
on inducing process-based models presented in (Langley et
al., 2002). Note however, that the taxonomy of process classes
introduced here allows for better organization of knowledge.
Also, here we made the combining scheme explicit, as op-
posed to the implicit combining scheme used there—models
of individual processes are always additively combined. Fi-
nally, note that methods for inducing equation-based models
from data have been already used to induce models of en-
vironmental systems, (see, e.g., Kompare and Džeroski, 1995;
Todorovski et al., 1998). They have been also successfully ap-
plied to tasks of revising existing models of environmental
s
2

6

I
m

The framework integrates the theoretical knowledge-driven
and the empirical data-driven approaches to modeling. The
framework provides a formalism for encoding and integrat-
ing domain-specific knowledge in the process of model in-
duction. The knowledge is organized in a taxonomy of process
classes, each representing an important class of processes in
the observed domain. This high-level knowledge represen-
tation can be automatically transformed to the operational
form of grammars that specify the space of candidate mod-
els of the observed system. The equation discovery method
Lagramge can be then used to search through the space of
candidate models and find the one that fits the measured data
best.

The results of the application of the modeling framework
to two real-world modeling tasks show that our framework is
capable of inducing comprehensible dynamic systems’ mod-
els from real-world measurement data. Our framework per-
forms better than existing equation discovery methods on
the tasks of modeling algae growth in Lagoon of Venice in
terms of performance, flexibility, and comprehensibility of
the discovered models. The experiment on modeling wa-
ter level variation in Ringkøbing fjord illustrates the capa-
bility of our framework to address modeling tasks, in which
a human expert partially specifies the model structure and
leaves other parts unspecified—our framework can be then
applied to induce the unspecified parts of the model from
data.
ystem, see, e.g., (Whigham and Recknagel, 2001; Saito et al.,
001; Todorovski et al., 2003).

. Summary and further work

n this paper, we presented a framework for automated
odeling of dynamic systems based on equation discovery.
Although the scope of this paper is modeling dynamic
change of the observed system through time, the approach can
be extended to incorporate knowledge about spatial processes
also. In the population dynamics domain, these processes
would reflect the spatial diffusion of populations through the
environment. The extended approach would allow modeling
of spatio-temporal dynamic systems with partial differential
equations (Todorovski et al., 2000).
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Appendix A

A.1. Complete library of modeling knowledge for population dynamics
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