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Abstract. The paper introduces meta decision trees (MDTs), a novel method for combining multiple classifiers.
Instead of giving a prediction, MDT leaves specify which classifier should be used to obtain a prediction. We present
an algorithm for learning MDTs based on the C4.5 algorithm for learning ordinary decision trees (ODTs). An
extensive experimental evaluation of the new algorithm is performed on twenty-one data sets, combining classifiers
generated by five learning algorithms: two algorithms for learning decision trees, a rule learning algorithm, a
nearest neighbor algorithm and a naive Bayes algorithm. In terms of performance, stacking with MDTs combines
classifiers better than voting and stacking with ODTs. In addition, the MDTs are much more concise than the
ODTs and are thus a step towards comprehensible combination of multiple classifiers. MDTs also perform better
than several other approaches to stacking.
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1. Introduction

The task of constructing ensembles of classifiers (Dietterich, 1997) can be broken down
into two sub-tasks. We first have to generate a diverse set of base-level classifiers. Once
the base-level classifiers have been generated, the issue of how to combine their predictions
arises.

Several approaches to generating base-level classifiers are possible. One approach is to
generate classifiers by applying different learning algorithms (with heterogeneous model
representations) to a single data set (see, e.g., Merz, 1999). Another possibility is to apply
a single learning algorithm with different parameters settings to a single data set. Finally,
methods like bagging (Breiman, 1996) and boosting (Freund & Schapire, 1996) generate
multiple classifies by applying a single learning algorithm to different versions of a given
data set. Two different methods for manipulating the data set are used: random sampling
with replacement (also called bootstrap sampling) in bagging and re-weighting of the mis-
classified training examples in boosting.

Techniques for combining the predictions obtained from the multiple base-level classifiers
can be clustered in three combining frameworks: voting (used in bagging and boosting),
stacked generalization or stacking (Wolpert, 1992) and cascading (Gama, 1998). In voting,
each base-level classifier gives a vote for its prediction. The prediction receiving the most
votes is the final prediction. In stacking, a learning algorithm is used to learn how to combine
the predictions of the base-level classifiers. The induced meta-level classifier is then used to
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obtain the final prediction from the predictions of the base-level classifiers. Cascading is an
iterative process of combining classifiers: at each iteration, the training data set is extended
with the predictions obtained in the previous iteration.

The work presented here focuses on combining the predictions of base-level classifiers
induced by applying different learning algorithms to a single data set. It adopts the stacking
framework, where we have to learn how to combine the base-level classifiers. To this end,
it introduces the notion of meta decision trees (MDTs), proposes an algorithm for learning
them and evaluates MDTs in comparison to other methods for combining classifiers.

Meta decision trees (MDTs) are a novel method for combining multiple classifiers. The
difference between meta and ordinary decision trees (ODTs) is that MDT leaves specify
which base-level classifier should be used, instead of predicting the class value directly. The
attributes used by MDTs are derived from the class probability distributions predicted by
the base-level classifiers for a given example. We have developed MLC4.5, a modification
of C4.5 (Quinlan, 1993) for inducing meta decision trees. MDTs and MLC4.5 are described
in Section 3.

The performance of MDTs is evaluated on a collection of twenty-one data sets. MDTs
are used to combine classifiers generated by five base-level learning algorithms: two
tree-learning algorithms C4.5 (Quinlan, 1993) and LTree (Gama, 1999), the rule-learning
algorithm CN2 (Clark & Boswell, 1991), the k-nearest neighbor (k-NN) algorithm
(Wettschereck, 1994) and a modification of the naive Bayes algorithm (Gama, 2000). In
the experiments, we compare the performance of stacking with MDTs to the performance
of stacking with ODTs. We also compare MDTs with two voting schemes and two other
stacking approaches. Finally, we compare MDTs to boosting and bagging of decision trees
as state of the art methods for constructing ensembles of classifiers.

Section 4 reports on the experimental methodology and results. The experimental results
are analyzed and discussed in Section 5. The presented work is put in the context of previous
work on combining multiple classifiers in Section 6. Section 7 presents conclusions based
on the empirical evaluation along with directions for further work.

2. Combining multiple classifiers

In this paper, we focus on combining multiple classifiers generated by using different
learning algorithms on a single data set. In the first phase, depicted on the left hand side of
figure 1, a set C = {C1, C2, . . . CN } of N base-level classifiers is generated by applying the
learning algorithms A1,A2, . . .AN to a single training data set L .

We assume that each base-level classifier from C predicts a probability distribution over
the possible class values. Thus, the prediction of the base-level classifier C when applied
to example x is a probability distribution vector:

pC (x) = (pC (c1 | x), pC (c2 | x), . . . pC (ck | x)),

where {c1, c2, . . . ck} is a set of possible class values and pC (ci | x) denotes the probability
that example x belongs to class ci as estimated (and predicted) by classifier C . The class c j

with the highest class probability pC (c j | x) is predicted by classifier C .
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Figure 1. Constructing and using an ensemble of classifiers. Left hand side: generation of the base-level classifiers
C = {C1, C2, . . . CN } by applying N different learning algorithms to a single training data set L . Right hand side:
classification of a new example x using the base-level classifiers in C and the combining method CML.

The classification of a new example x at the meta-level is depicted on the right hand side
of figure 1. First, the N predictions {pC1 (x), pC2 (x), . . . pCN (x)} of the base-level classifiers
in C on x are generated. The obtained predictions are then combined using the combining
method CML. Different combining methods are used in different combining frameworks. In
the following subsections, the combining frameworks of voting and stacking are presented.

2.1. Voting

In the voting framework for combining classifiers, the predictions of the base-level classifiers
are combined according to a static voting scheme, which does not change with training data
set L . The voting scheme remains the same for all different training sets and sets of learning
algorithms (or base-level classifiers).

The simplest voting scheme is the plurality vote. According to this voting scheme, each
base-level classifier casts a vote for its prediction. The example is classified in the class that
collects the most votes.

There is a refinement of the plurality vote algorithm for the case where class probability
distributions are predicted by the base-level classifiers (Dietterich, 1997). Let pC (x) be the
class probability distribution predicted by the base-level classifier C on example x . The
probability distribution vectors returned by the base-level classifiers are summed to obtain
the class probability distribution of the meta-level voting classifier:

pCML(x) = 1

|C|
∑

C∈C
pC (x)

The predicted class for x is the class c j with the highest class probability pCML(c j | x).

2.2. Stacking

In contrast to voting, where CML is static, stacking induces a combiner method CML from
the meta-level training set that is based on base-level training set L and predictions of the
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Table 1. The algorithm for building the meta-level data set used to induce the combiner CML in the stacking
framework.

function build combiner(L , {A1,A2, . . .AN }, m, AML)

{L1, L2, . . . Lm} = stratified partition(L, m)

LML = { }
for i = 1 to m do

for j = 1 to N do

Let C j,i be the classifier obtained by applying A j to L \ Li

Let CV j,i be class values predicted by C j,i on examples in Li

Let CD j,i be class distributions predicted by C j,i on examples in Li

MLA j,i = meta level attributes(CV j,i , CD j,i , Li )

endfor

LML = LML ∪ joinN
j=1MLA j,i

endfor

Apply AML to LML in order to induce the combiner CML

return CML

endfunction

base-level classifiers. CML is induced by using a learning algorithm at the meta-level: the
meta-level examples are constructed from the predictions of the base-level classifiers on
the examples in L and the correct classifications of the latter. As the combiner is intended
to combine the predictions of the base-level classifiers (induced on the entire training set
L) for unseen examples, special care has to be taken when constructing the meta-level data
set. To this end, the cross-validation procedure presented in Table 1 is applied.

First, the training set L is partitioned into m disjoint sets L1, L2, . . . Lm of (almost)
equal size. The partitioning is stratified in the sense that each set Li roughly preserves the
class probability distribution in L . In order to obtain the base-level predictions on unseen
examples, the learning algorithm A j is used to train base-level classifier C j,i on the training
set L\Li . The trained classifier C j,i is then used to obtain the predictions for examples in Li .
The predictions of the base-level classifiers include the predicted class values CV j,i as well
as the class probability distributions CD j,i . These are then used to calculate the meta-level
attributes for the examples in Li .

The meta-level attributes are calculated for all N learning algorithms and joined together
into set of meta-level examples. This set is one of the m parts of the meta-level data set LML.
Repeating this procedure m times (once for each set Li ), we obtain the whole meta-level
data set. Finally, the learning algorithm AML is applied to it in order to induce the combiner
CML.

The framework for combining multiple classifiers used in this paper is based on the
combiner methodology described in Chan and Stolfo (1997) and the stacking framework
of Wolpert (1992). In these two approaches, only the class values predicted by the base-
level classifiers are used as meta-level attributes. Therefore, themeta level attributes
procedure used in these frameworks is trivial: it returns only the class values predicted by the
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base-level classifiers. In our approach, we use the class probability distributions predicted
by the base-level classifiers in addition to the predicted class values for calculating the set
of meta-level attributes. The meta-level attributes used in our study are discussed in detail
in Section 3.

3. Meta decision trees

In this section, we first introduce meta decision trees (MDTs). We then discuss the possible
sets of meta-level attributes used to induce MDTs. Finally, we present an algorithm for
inducing MDTs, named MLC4.5.

3.1. What are meta decision trees

The structure of a meta decision tree is identical to the structure of an ordinary decision
tree. A decision (inner) node specifies a test to be carried out on a single attribute value
and each outcome of the test has its own branch leading to the appropriate subtree. In
a leaf node, a MDT predicts which classifier is to be used for classification of an ex-
ample, instead of predicting the class value of the example directly (as an ODT would
do).

The difference between ordinary and meta decision trees is illustrated with the example
presented in Tables 2 and 3. First, the predictions of the base-level classifiers (Table 2(a))
are obtained on the given data set. These include predicted class probability distributions
as well as class values themselves. In the meta-level data set M (Table 2(b)), the meta-
level attributes C1 and C2 are the class value predictions of two base-level classifiers C1

and C2 for a given example. The two additional meta-level attributes Conf 1 and Conf 2
measure the confidence of the predictions of C1 and C2 for a given example. The highest
class probability, predicted by a base-level classifier, is used as a measure of its prediction
confidence.

The meta decision tree induced using the meta-level data set M is given in Table 3(a).
The MDT is interpreted as follows: if the confidence Conf 1 of the base-level classifier
C1 is high, then C1 should be used for classifying the example, otherwise the base-level
classifier C2 should be used. The ordinary decision tree induced using the same meta-level
data set M (given in Table 3(b)) is much less comprehensible, despite the fact that it reflects
the same rule for choosing among the base-level predictions. Note that both the MDT
and the ODT need the predictions of the base-level classifiers in order to make their own
predictions.

The comprehensibility of the MDT from Table 3(a) is entirely due to the extended ex-
pressiveness of the MDT leaves. Both the MDT and the ODT in Tables 3(a) and (b) are
induced from the propositional data set M . While the ODT induced from M is purely propo-
sitional, the MDT is not. A (first order) logic program equivalent to the MDT is presented
in Table 3(c). The predicate combine(Conf 1, C1, Conf 2, C2, C) is used to combine the
predictions of the base-level classifiers C1 and C2 into class C according to the values of the
attributes (variables) Conf 1 and Conf 2. Each clause of the program corresponds to one leaf
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Table 2. Building the meta-level data set.

(a) Predictions of the base-level classifiers.

Classifier C1 Classifier C2
Base-level
attributes (x) pC1 (0 | x) pC1 (1 | x) Pred. pC2 (0 | x) pC2 (1 | x) Pred.

. . . 0.875 0.125 0 0.875 0.125 0

. . . 0.875 0.125 0 0.25 0.75 1

. . . 0.125 0.875 1 0.75 0.25 0

. . . 0.125 0.875 1 0.125 0.875 1

. . . 0.625 0.375 0 0.75 0.25 0

. . . 0.625 0.375 0 0.125 0.875 1

. . . 0.375 0.625 1 0.75 0.25 0

. . . 0.375 0.625 1 0.125 0.875 1

(b) The meta-level data set M .

Conf 1 C1 Conf 2 C2 True class

0.875 0 0.875 0 0

0.875 0 0.75 1 0

0.875 1 0.75 0 1

0.875 1 0.875 1 1

0.625 0 0.75 0 0

0.625 0 0.875 1 1

0.625 1 0.75 0 0

0.625 1 0.875 1 1

node of the MDT and includes a non-propositional class value assignment (C = C2 in the
first and C = C1 in the second clause). In the propositional framework, the only possible
assignments are C = 0 and C = 1, one for each class value.

There is another way of interpreting meta decision trees. A meta decision tree selects an
appropriate classifier for a given example in the domain. Consider the subset of examples
falling in one leaf of the MDT. It identifies a subset of the data where one of the base-level
classifiers performs better than the others. Thus, the MDT identify subsets that are relative
areas of expertise of the base-level classifiers. An area of expertise of a base-level classifier
is relative in the sense that its predictive performance in that area is better as compared to the
performances of the other base-level classifiers. This is different from an area of expertise
of an individual base-level classifier (Ortega, 1996), which is a subset of the data where the
predictions of a single base-level classifier are correct.

Note that in the process of inducing meta decision trees two types of attributes are
used. Ordinary attributes are used in the decision (inner) nodes of the MDT (e.g., at-
tributes Conf 1 and Conf 2 in the example meta-level data set M). The role of these at-
tributes is identical to the role of attributes used for inducing ordinary decision trees. Class
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Table 3. The difference between ordinary and meta decision trees. (a) The meta decision tree induced from the
meta-level data set M (by MLC4.5). (b) The ODT induced from the same meta-level data set M (by C4.5). (c)
The MDT written as a logic program.

(a) The MDT induced from M

Conf1 <= 0.625: C2

Conf1 > 0.625: C1

(b) The ODT induced from M

C1 = 0:

| Conf1 > 0.625

| Conf1 <= 0.625:

| | C2 = 0: 0

| | C2 = 1: 1

C1 = 1:

| Conf1 > 0.625: 1

| Conf1 <= 0.625:

| | C2 = 0: 0

| | C2 = 1: 1

(c) The MDT written as a logic program

combine(Conf 1, C1, Conf 2, C2 , C) :- Conf 1 ≤ 0.625, C = C2.

combine(Conf 1, C1, Conf 2, C2 , C) :- Conf 1 > 0.625, C = C1.

attributes (e.g., C1 and C2 in M), on the other hand, are used in the leaf nodes only.
Each base-level classifier has its class attribute: the values of this attribute are the pre-
dictions of the base-level classifier. Thus, the class attribute assigned to the leaf node of
the MDT decides which base-level classifier will be used for prediction. When inducing
ODTs for combining classifiers, the class attributes are used in the same way as ordinary
attributes.

The partitioning of the data set into relative areas of expertise is based on the values
of the ordinary meta-level attributes used to induce MDTs. In existing studies about ar-
eas of expertise of individual classifiers (Ortega, 1996), the original base-level attributes
from the domain at hand are used. We use a different set of ordinary attributes for in-
ducing MDTs. These are properties of the class probability distributions predicted by
the base-level classifiers and reflect the certainty and confidence of the predictions.
However, the original base-level attributes can be also used to induce MDTs. Details
about each of the two sets of meta-level attributes are given in the following
subsection.

3.2. Meta-level attributes

As meta-level attributes, we calculate the properties of the class probability distributions
(class distribution properties—CDP) predicted by the base-level classifiers that reflect the
certainty and confidence of the predictions.
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First, maxprob(x, C) is the highest class probability (i.e. the probability of the predicted
class) predicted by the base-level classifier C for example x :

maxprob(x, C) = k
max
i=1

pC (ci | x).

Next, entropy(x, C) is the entropy of the class probability distribution predicted by the
classifier C for example x :

entropy(x, C) = −
k∑

i=1

pC (ci | x) · log2 pC (ci | x).

Finally, weight(x, C) is the fraction of the training examples used by the classifier C
to estimate the class distribution for example x . For decision trees, it is the weight of the
examples in the leaf node used to classify the example. For rules, it is the weight of the
examples covered by the rule(s) which has been used to classify the example. This property
has not been used for the nearest neighbor and naive Bayes classifiers, as it does not apply
to them in a straightforward fashion.

The entropy and the maximum probability of a probability distribution reflect the certainty
of the classifier in the predicted class value. If the probability distribution returned is highly
spread, the maximum probability will be low and the entropy will be high, indicating that
the classifier is not very certain in its prediction of the class value. On the other hand, if the
probability distribution returned is highly focused, the maximum probability is high and
the entropy low, thus indicating that the classifier is certain in the predicted class value. The
weight quantifies how reliable is the predicted class probability distribution. Intuitively, the
weight corresponds to the number of training examples used to estimate the probability
distribution: the higher the weight, the more reliable the estimate.

An example MDT, induced on the image domain from the UCI repository (Blake &
Merz, 1998), is given in Table 4. The leaf denoted by an asterisk (*) specifies that the
C4.5 classifier is to be used to classify an example, if (1) the maximum probability in the
class probability distribution predicted by k-NN is smaller than 0.77; (2) the fraction of
the examples in the leaf of the C4.5 tree used for prediction is larger than 0.4% of all the
examples in the training set; and (3) the entropy of the class distribution predicted by C4.5
is less then 0.14. In sum, if the k-NN classifier is not very confident in its prediction (1)

Table 4. A meta decision tree induced on the image domain using class distribution properties as ordinary
attributes.

knn maxprob > 0.77147: KNN

knn maxprob <= 0.77147:

| c45 weight <= 0.00385: KNN

| c45 weight > 0.00385:

| | c45 entropy <= 0.14144: C4.5 (*)

| | c45 entropy > 0.14144: LTREE
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Table 5. A meta decision tree induced on the image domain using base-level attributes as ordinary attributes.

short-line-density-5 <= 0:

| short-line-density-2 <= 0: KNN

| short-line-density-2 > 0: LTREE

short-line-density-5 > 0:

| short-line-density-5 <= 0.111111: LTREE

| short-line-density-5 > 0.111111: C45 (*)

and the C4.5 classifier is very confident in its prediction (3 and 2), the leaf recommends
using the C4.5 prediction; this is consistent with common-sense knowledge in the domain
of classifier combination.

Another set of ordinary attributes used for inducing meta decision trees is the set of
original domain (base-level) attributes (BLA). In this case, the relative areas of expertise of
the base-level classifiers are described in terms of the original domain attributes as in the
example MDT in Table 5.

The leaf denoted by an asterisk (*) in Table 5 specifies that C4.5 should be used to
classify examples with short-line-density-5 values larger than 0.11. MDTs based
on the base-level ordinary attributes can provide new insight into the applicability of the
base-level classifiers to the domain of use. However, only a human expert from the domain
of use can interpret an MDT induced using these attributes. It cannot be interpreted directly
from the point of view of classifier combination.

Note here another important property of MDTs induced using the CDP set of meta-level
attributes. They are domain independent in the sense that the same language for expressing
meta decision trees is used in all domains once we fix the set of base-level classifiers to be
used. This means that a MDT induced on one domain can be used in any other domain for
combining the same set of base-level classifiers (although it may not perform very well). In
part, this is due to the fact that the CDP set of meta-level attributes is domain independent.
It depends only on the set of base-level classifiers C. However, an ODT built from the same
set of meta-level attributes is still domain dependent for two reasons. First, it uses tests on
the class values predicted by the base-level classifiers (e.g., the tests C1 = 0 / C1 = 1 in
the root node of the ODT from Table 3(b)). Second, an ODT predicts the class value itself,
which is clearly domain dependent.

In sum, there are three reasons for the domain independence of MDTs: (1) the CDP
set of meta-level attributes; (2) not using class attributes in the decision (inner) nodes
and (3) predicting the base-level classifier to be used instead of predicting the class value
itself.

3.3. MLC4.5—A modification of C4.5 for learning MDTs

In this subsection, we present MLC4.5,1 an algorithm for learning MDTs based on
Quinlan’s C4.5 (Quinlan, 1993) system for inducing ODTs. MLC4.5 takes as input a
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meta-level data set as generated by the algorithm in Table 1. Note that this data set con-
sists of ordinary and class attributes. There are four differences between MLC4.5 and
C4.5:

1. Only ordinary attributes are used in internal nodes;
2. Assignments of the form C = Ci (where Ci is a class attribute) are made by MLC4.5

in leaf nodes, as opposed to assignments of the form C = ci (where ci is a class
value);

3. The goodness-of-split for internal nodes is calculated differently (as described below);
4. MLC4.5 does not post-prune the induced MDTs.

The rest of the MLC4.5 algorithm is identical to the original C4.5 algorithm. Below we
describe C4.5’s and MLC4.5’s measures for selecting attributes in internal nodes.

C4.5 is a greedy divide and conquer algorithm for building classification trees (Quinlan,
1993). At each step, the best split according to the gain (or gain ratio) criterion is chosen
from the set of all possible splits for all attributes. According to this criterion, the split is
chosen that maximizes the decrease of the impurity of the subsets obtained after the split as
compared to the impurity of the current subset of examples. The impurity criterion is based
on the entropy of the class probability distribution of the examples in the current subset S
of training examples:

info(S) = −
k∑

i=1

p(ci , S) · log2 p(ci , S)

where p(ci , S) denotes the relative frequency of examples in S that belong to class ci . The
gain criterion selects the split that maximizes the decrement of the info measure.

In MLC4.5, we are interested in the accuracies of each of the base-level classifiers
C from C on the examples in S, i.e., the proportion of examples in S that have a class
equal to the class attribute C . The newly introduced measure, used in MLC4.5, is defined
as:

infoML(S) = 1 − max
C∈C

accuracy(C, S),

where accuracy(C, S) denotes the relative frequency of examples in S that are correctly
classified by the base-level classifier C . The vector of accuracies does not have probability
distribution properties (its elements do not sum to 1), so the entropy can not be calcu-
lated. This is the reason for replacing the entropy based measure with an accuracy based
one.

As in C4.5, the splitting process stops when at least one of the following two criteria
is satisfied: (1) the accuracy of one of the classifiers on a current subset is 100% (leading
to infoML(S) = 0); or (2) a user defined minimal number of examples is achieved in the
current subset. In each case, a leaf node is being constructed. The classifier with the maximal
accuracy is being predicted by a leaf node of a MDT.
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In order to compare MDTs with ODTs in a principled fashion, we also developed a
intermediate version of C4.5 (called AC4.5) that induces ODTs using the accuracy based
infoA measure:

infoA(S) = 1 − k
max
i=1

p(ci , S).

4. Experimental methodology and results

The main goal of the experiments we performed was to evaluate the performance of meta
decision trees, especially in comparison to other methods for combining classifiers, such as
voting and stacking with ordinary decision trees, as well as other methods for constructing
ensembles of classifiers, such as boosting and bagging. We also investigate the use of
different meta-level attributes in MDTs. We performed experiments on a collection of
twenty-one data sets from the UCI Repository of Machine Learning Databases and Domain
Theories (Blake & Merz, 1998). These data sets have been widely used in other comparative
studies.

In the remainder of this section, we first describe how classification error rates were
estimated and compared. We then list all the base-level and meta-level learning algorithms
used in this study. Finally, we describe a measure of the diversity of the base-level classifiers
that we use in comparing the performance of meta-level learning algorithms.

4.1. Estimating and comparing classification error rates

In all the experiments presented here, classification errors are estimated using 10-fold
stratified cross validation. Cross validation is repeated ten times using a different random
reordering of the examples in the data set. The same set of re-orderings have been used for
all experiments.

For pair-wise comparison of classification algorithms, we calculated the relative im-
provement and the paired t-test, as described below. In order to evaluate the accuracy
improvement achieved in a given domain by using classifier C1 as compared to using
classifier C2, we calculate the relative improvement: 1 − error(C1)/error(C2). In the
analysis presented in Section 5, we compare the performance of meta decision trees in-
duced using CDP as ordinary meta-level attributes to other approaches: C1 will thus refer
to combiners induced by MLC4.5 using CDP. The average relative improvement across all
domains is calculated using the geometric mean of error reduction in individual domains:
1 − geometric mean(error(C1)/error(C2)).

The classification errors of C1 and C2 averaged over the ten runs of 10-fold cross validation
are compared for each data set (error(C1) and error(C2) refer to these averages). The
statistical significance of the difference in performance is tested using the paired t-test
(exactly the same folds are used for C1 and C2) with significance level of 95%: +/− to
the right of a figure in the tables with results means that the classifier C1 is significantly
better/worse than C2.

Another aspect of tree induction performance is the simplicity of the induced decision
trees. In the experiments presented here, we used the size of the decision trees, measured
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as the number of (internal and leaf) nodes, as a measure of simplicity: the smaller the tree,
the simpler it is.

4.2. Base-level algorithms

Five learning algorithms have been used in the base-level experiments: two tree-learning
algorithms C4.5 (Quinlan, 1993) and LTree (Gama, 1999), the rule-learning algorithm CN2
(Clark & Boswell, 1991), the k-nearest neighbor (k-NN) algorithm (Wettschereck, 1994)
and a modification of the naive Bayes algorithm (Gama, 2000).

All algorithms have been used with their default parameters’ settings. The output of each
base-level classifier for each example in the test set consist of at least two components: the
predicted class and the class probability distribution. All the base-level algorithms used in
this study calculate the class probability distribution for classified examples, but two of them
(k-NN and naive Bayes) do not calculate the weight of the examples used for classification
(see Section 3). The code of the other three of them (C4.5, CN2 and LTree) was adapted
to output the class probability distribution as well as the weight of the examples used for
classification.

The classification errors of the base-level classifiers on the twenty-one data sets are
presented in Table 7 in Appendix. The smallest overall classification error is achieved using
linear discriminant trees induced with LTree. However, on different data sets, different
base-level classifiers achieve the smallest classification error.

4.3. Meta-level algorithms

At the meta-level, we evaluate the performances of eleven different algorithms for construct-
ing ensembles of classifiers (listed below). Nine of these make use of exactly the same set of
five base-level classifiers induced by the five algorithms from the previous section. In brief,
two perform stacking with ODTs, using the algorithms C4.5 and AC4.5 (see Section 3.3);
three perform stacking with MDTs using the algorithm MLC4.5 and three different sets
of meta-level attributes (CDP, BLA, CDP+BLA); two are voting schemes; Select-Best
chooses the best base-level classifier, and SCANN performs stacking with nearest neighbor
after analyzing dependencies among the base-level classifiers. In addition, boosting and
bagging of decision trees are considered, which create larger ensembles (200 trees).

C-C4.5 uses ordinary decision trees induced with C4.5 for combining base-level classifiers.
C-AC4.5 uses ODTs induced with AC4.5 for combining base-level classifiers.
MDT-CDP uses meta decision trees induced with MLC4.5 on a set of class distribution

properties (CDP) as meta-level attributes.
MDT-BLA uses MDTs induced with MLC4.5 on a set of base-level attributes (BLA) as

meta-level attributes.
MDT-CDP+BLA uses MDTs induced with MLC4.5 on a union of two alternative sets of

meta-level attributes (CDP and BLA).
P-VOTE is a simple plurality vote algorithm (see Section 2.1).
CD-VOTE is a refinement of the plurality vote algorithm for the case where class probability

distributions are predicted by the base-level classifiers (see Section 2.1).
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Select-Best selects the base-level classifier that performs best on the training set (as estimated
by 10-fold stratified cross-validation). This is equivalent to building a single leaf MDT.

SCANN Merz (1999) performs Stacking with Correspodence Analysis and Nearest Nei-
ghbours. Correspondence analysis is used to deal with the highly correlated predictions
of the base-level classifiers: SCANN transforms the original set of potentially highly
correlated meta-level attributes (i.e., predictions of the base-level classifiers), into a new
(smaller) set of uncorrelated meta-level attributes. A nearest neighbor classifier is then
used for classification with the new set of meta-level attributes.

Boosting of decision trees. Two hundred iterations were used for boosting. Decision trees
were induced using J48,2 (C4.5) with default parameters’ settings for pre- and post-
pruning. The WEKA (Witten & Frank, 1999) data mining suite implements the AdaBoost
(Freund & Schapire, 1996) boosting method with re-weighting of the training examples.

Bagging of decision trees. Two hundred iterations (decision trees), were used for bagging,
using J4.8 with default settings.

A detailed report on the performance of the above methods can be found in Appendix.
Their classification errors can be found in Table 9. The sizes of (ordinary and meta) decision
trees induced with different meta-level combining algorithms are given in Table 8. Finally,
a comparison of the classification errors of each method to those of MDT-CDP (in terms of
average relative accuracy improvement and number of significant wins and losses) is given
in Table 10. A summary of this detailed report is given in Table 6.

4.4. Diversity of base-level classifiers

Empirical studies performed in Ali (1996) and Ali and Pazzani (1996) show that the clas-
sification error of meta-level learning methods as well as the improvement of accuracy
achieved using them is highly correlated to the degree of diversity of the predictions of the

Table 6. Summary performance of the meta-level learning algorithms as compared to MDTs induced using
class distribution properties (MDT-CDP) as meta-level attributes: average relative accuracy improvement (in %),
number of significant wins/losses and average tree size (where applicable). Details in Tables 10 and 8 in Appendix.

Meta-level algorithm Ave. rel. acc. imp. (in %) Wins/losses Ave. tree size

C-C4.5 −4.09 15/2 46.01

C-AC4.5 7.90 12/1 95.48

MDT-CDP 0.00 0/0 2.79

MDT-BLA 14.47 8/0 66.94

MDT-CDP+BLA 13.91 8/0 73.73

P-VOTE 22.33 10/3 NA

CD-VOTE 19.64 10/5 NA

Select-Best 7.81 5/2 1

SCANN 13.95 9/6 NA

Boosting 9.36 13/6 NA

Bagging 22.26 10/4 NA



236 L. TODOROVSKI AND S. DŽEROSKI
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Figure 2. Relative accuracy improvement achieved with MDTs when compared to two base-level classifiers
(LTree and k-NN) in dependence of the error correlation among the five base-level classifiers.

base-level classifiers. The measure of the diversity of two classifiers used in these studies is
error correlation. The smaller the error correlation, the greater the diversity of the base-level
classifiers.

Error correlation is defined by Ali (1996) and Ali and Pazzani (1996) as the probability that
both classifiers make the same error. This definition of error correlation is not “normalized”:
its maximum value is the lower of the two classification errors. An alternative definition
of error correlation, proposed in Gama (1999), is used in this paper. Error correlation is
defined as the conditional probability that both classifiers make the same error, given that
one of them makes an error:

φ̂(Ci , C j ) = p(Ci (x) = C j (x) | Ci (x) 
= c(x) ∨ C j (x) 
= c(x)),

where Ci (x) and C j (x) are predictions of classifiers Ci and C j for a given example x and
c(x) is the true class of x . The error correlation for a set of multiple classifiers C is defined
as the average of the pairwise error correlations:

φ̂(C) = 1

|C|(|C| − 1)

∑

Ci ∈C

∑

C j 
=Ci

φ̂(Ci , C j ).

The graphs in figure 2 confirm these results for meta decision trees. The relative accuracy
improvement achieved with MDTs over LTree and k-NN (two base-level classifiers with
highest overall accuracies) decreases as the error correlation of the base-level classifiers in-
creases. The linear regression line interpolated through the points confirms this trend, which
shows that performance improvement achieved with MDTs is correlated to the diversity of
errors of the base-level classifiers.

5. Analysis of the experimental results

The results of the experiments are summarized in Table 6. In brief, the following main
conclusions can be drawn from the results:
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1. The properties of the class probability distributions predicted by the base-level classifiers
(CDP) are better meta-level attributes for inducing MDTs than the base-level attributes
(BLA). Using BLA in addition to CDP worsens the performance.

2. Meta decision trees (MDTs) induced using CDP outperform ordinary decision trees and
voting for combining classifiers.

3. MDTs perform slightly better than the SCANN and Select-Best methods.
4. The performance improvement achieved with MDTs is correlated to the diversity of

errors of the base-level classifiers: the higher the diversity, the better the relative perfor-
mance as compared to other methods.

5. Using MDTs to combine classifiers induced with different learning algorithms out-
performs ensemble learning methods based on bagging and boosting of decision
trees.

Below we look into these claims and the experimental results in some more detail.

5.1. MDTs with different sets of meta-level attributes

We analyzed the dependence of MDTs performance on the set of ordinary meta-level
attributes used to induce them. We used three sets of attributes: the properties of the class
distributions predicted by the base-level classifiers (CDP), the original (base-level) domain
attributes (BLA) and their union (CDP+BLA).

The average relative improvement achieved by MDTs induced using CDP over MDTs
induced using BLA and CDP+BLA is about 14% with CDP being significantly better in
8 domains (see Tables 6 and 10 in Appendix). MDTs induced using CDP are about 25
times smaller on average than MDTs induced using BLA and CDP+BLA (see Table 8).
These results show that the CDP set of meta-level attributes is better than the BLA set.
Furthermore, using BLA in addition to CDP decreases performance. In the remainder of
this section, we only consider MDTs induced using CDP.

An analysis of the results for ordinary decision trees induced using CDP, BLA and
CDP+BLA (only the results for CDP are actually presented in the paper) shows that the
claim holds also for ODTs. This result is especially important because it highlights the
importance of using the class probability distributions predicted by the base-level classi-
fiers for identifying their (relative) areas of expertise. So far, base-level attributes from the
original domain have typically been used to identify the areas of expertise of base-level
classifiers.

5.2. Meta decision trees vs. ordinary decision trees

To compare combining classifiers with MDTs and ODTs, we first look at the relative
improvement of using MLC4.5 over C-C4.5 (see Table 6, column C-C4.5 of Table 10 in
Appendix and left hand side of figure 3).

MLC4.5 performs significantly better in 15 and significantly worse in 2 data sets. There
is a 4% overall decrease of accuracy (this is a geometric mean), but this is entirely due to
the result in the tic-tac-toe domain, where all combining methods perform very well. If we
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Figure 3. Relative improvement of the accuracy when using MDTs induced with MLC4.5 when compared to
the accuracy of ODTs induced with AC4.5 and C4.5.

exclude the tic-tac-toe domain, a 7% overall relative increase is obtained. We can thus say
that MLC4.5 performs slightly better in terms of accuracy. However, the MDTs are much
smaller, the size reduction factor being over 16 (see Table 8), despite the fact that ODTs
induced with C4.5 are post-pruned and MDTs are not.

To get a clearer picture of the performance differences due to the extended expressive
power of MDT leaves (as compared to ODT leaves), we compare MLC4.5 and C-AC4.5
(see Table 6, column C-AC4.5 in Table 10 and right hand side of figure 3). Both MLC4.5
and AC4.5 use the same learning algorithm. The only difference between them is the types
of trees they induce: MLC4.5 induces meta decision trees and AC4.5 induces ordinary ones.
The comparison clearly shows that MDTs outperform ODTs for combining classifiers. The
overall relative accuracy improvement is about 8% and MLC4.5 is significantly better than
C-AC4.5 in 12 out of 21 data sets and is significantly worse in only one (ionosphere).
Consider also the graph on the right hand side of figure 3. MDTs perform better than
ODTs in all but two domains, with the performance gains being much larger than the
losses.

Furthermore, the MDTs are, on average, more than 34 times smaller than the ODTs
induced with AC4.5 (see Table 8). The reduction of the tree size improves the comprehen-
sibility of meta decision trees. For example, we were able to interpret and comment on the
MDT in Table 4.

In sum, meta decision trees performs better than ordinary decision trees for combining
classifiers: MDTs are more accurate and much more concise. The comparison of MLC4.5
and AC4.5 shows that the performance improvement is due to the extended expressive
power of MDT leaves.

5.3. Meta decision trees vs. voting

Combining classifiers with MDTs is significantly better than plurality vote in 10 domains
and significantly worse in 6. However, the significant improvements are much higher than
the significant drops of accuracy, giving an overall accuracy improvement of 22%. Since
CD-VOTE performs slightly better than plurality vote, a smaller overall improvement of
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Figure 4. Relative improvement of the accuracy of MDTs over two voting schemes in dependence of the degree
of error correlation between the base-level classifiers.

20% is achieved with MDTs. MLC4.5 is significantly better in 10 data sets and significantly
worse in 5. These results show that MDTs outperform the voting schemes for combining
classifiers (see Tables 6 and 10 in Appendix).

We explored the dependence of accuracy improvement by MDTs over voting on the
diversity of the base-level classifiers. The graphs in figure 4 show that MDTs can make
better use of the diversity of errors of the base-level classifiers than the voting schemes.
Namely, for the domains with low error correlation (and therefore higher diversity) of
the base-level classifiers, the relative improvement of MDTs over the voting schemes
is higher. However, the slope of the linear regression line is smaller than the one for
the improvement over the base-level classifiers. Still, the trend clearly shows that
MDTs make better use of the error diversity of the base-level predictions than
voting.

5.4. Meta decision trees vs. Select-Best

Combining classifiers with MDTs is significantly better than Select-Best in 5 domains and
significantly worse in 2, giving an overall accuracy improvement of almost 8% (see Tables 6
and 10 in Appendix).

The results of the dependence analysis of accuracy improvement by MDTs over Select-
Best on the diversity of the base-level classifiers is given in figure 5. MDTs can make
slightly better use of the diversity of errors of the base-level classifiers than Select-Best.
The slope of the linear regression line is smaller than the one for the improvement over the
voting methods.

5.5. Meta decision trees vs. SCANN

Combining classifiers with MDTs is significantly better than SCANN in 9 domains and
significantly worse in 6 (see Tables 6 and 10 in Appendix). However, the significant
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Figure 5. Relative improvement of the accuracy of MDTs over Select-Best method in dependence of the degree
of error correlation between the base-level classifiers.
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Figure 6. Relative improvement of the accuracy of MDTs over SCANN method in dependence of the degree of
error correlation between the base-level classifiers.

improvements are much higher than the significant drops of accuracy, giving an overall
accuracy improvement of almost 14%. These results show that MDTs outperform the
SCANN method for combining classifiers.

We explored the dependence of accuracy improvement by MDTs over SCANN on the
diversity of the base-level classifiers. The graph in figure 6 shows that MDTs can make a
slightly better use of the diversity of errors of the base-level classifiers than SCANN. The
slope of the linear regression line is smaller than the one for the improvement over the
voting methods.
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5.6. Meta decision trees vs. boosting and bagging

Finally, we compare the performance of MDTs with the performance of two state of the art
ensemble learning methods: bagging and boosting of decision trees.

MLC4.5 performs significantly better than boosting in 13 and significantly better than
bagging in 10 out of the 21 data sets. MLC4.5 performed significantly worse than boosting
in 6 domains and significantly worse than bagging in 4 domains only. The overall relative
improvement of performance is 9% over boosting and 22% over bagging (see Tables 6 and
10 in Appendix).

It is clear that MDTs outperform bagging and boosting of decision trees. This comparison
is not fair in the sense that MDTs use base-level classifiers induced by decision trees and four
other learning methods, while boosting and bagging use only decision trees as a base-level
learning algorithm. However, it does show that our approach to constructing ensembles of
classifiers is competitive to existing state of the art approaches.

6. Related work

An overview of methods for constructing ensembles of classifiers can be found in Dietterich
(1997). Several meta-level learning studies are closely related to our work.

Let us first mention the study of using SCANN (Merz, 1999) for combining base-
level classifiers. As mentioned above, SCANN performs stacking by using correspondence
analysis of the classifications of the base-level classifiers. The author shows that SCANN
outperforms the plurality vote scheme, also in the case when the base-level classifiers are
highly correlated. SCANN does not use any class probability distribution properties of the
predictions by the base-level classifiers (although the possibility of extending the method
in that direction is mentioned). Therefore, no comparison with the CD voting scheme is
included in their study. Our study shows that MDTs using CDP attributes are slightly better
than SCANN in terms of performance. Also, the concept induced by SCANN at the meta-
level is not directly interpretable and can not be used for identifying the relative areas of
expertise of the base-level classifiers.

In cascading (Gama, Brazdil, & Valdes-Perez, 2000), base-level classifiers are induced
using the examples in a current node of the decision tree (or each step of the divide and
conquer algorithm for building decision trees). New attributes, based on the class probability
distributions predicted by the base-level classifiers, are generated and added to the set of
the original attributes in the domain. The base-level classifiers used in this study are naive
Bayes and Linear Discriminant. The integration of these two base-level classifiers within
decision trees is much tighter than in our combining/stacking framework. The similarity to
our approach is that class probability distributions are used.

A version of stacked generalization, using the class probability distributions predicted by
the base-level classifiers, is implemented in the data mining suite WEKA (Witten & Frank,
1999). However, class probability distributions are used there directly and not through their
properties, such as maximal probability and entropy. This makes them domain dependent in
the sense discussed in Section 3. The indirect use of class probability distributions through
their properties makes MDTs domain independent.
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Ordinary decision trees have already been used for combining multiple classifiers in Chan
and Stolfo (1997). However, the emphasis of their study is more on partitioning techniques
for massive data sets and combining multiple classifiers trained on different subsets of
massive data sets. Our study focuses on combining multiple classifiers generated on the
same data set. Therefore, the obtained results are not directly comparable to theirs.

Combining classifiers by identifying their areas of expertise has already been explored
in Ortega (1996) and Koppel and Engelson (1996). In their studies, a description of the
area of expertise in the form of an ordinary decision tree, called arbiter, is induced for each
individual base-level classifier. For a single data set, as many arbiters are needed as there
are base-level classifiers. When combining multiple classifiers, a voting scheme is used to
combine the decisions of the arbiters. However, a single MDT, identifying relative areas
of expertise of all base-level classifiers at once is much more comprehensible. Another
improvement presented in our study is the possibility to use the certainty and confidence
of the base-level predictions for identifying the classifiers expertise areas and not only the
original (base-level) attributes of the data set.

The present study is also related to our previous work on the topic of meta-level learn-
ing (Todorovski & Džeroski, 1999). There we introduced an inductive logic program-
ming (Quinlan, 1990) (ILP) framework for learning the relation between data set char-
acteristics and the performance of different (base-level) classifiers. A more expressive
(non-propositional) formulation is used to represent the meta-level examples (data set
characteristics), e.g., properties of individual attributes. The induced meta-level concepts
are also non-propositional. While MDT leaves are more expressive than ODT leaves, the
language of MDTs is still much less expressive than the language of logic programs used
in ILP.

7. Conclusions and further work

We have presented a new technique for combining classifiers based on meta decision trees
(MDTs). MDTs make the language of decision trees more suitable for combining classifiers:
they select the most appropriate base-level classifier for a given example. Each leaf of the
MDT represents a part of the data set, which is a relative area of expertise of the base-level
classifier in that leaf. The relative areas of expertise can be identified on the basis of the
values of the original (base-level) attributes (BLA) of the data set, but also on the basis
of the properties of the class probability distributions (CDP) predicted by the base-level
classifiers. The latter reflect the certainty and confidence of the class value predictions by
the individual base-level classifiers.

The extensive empirical evaluation shows that MDTs induced from CDPs perform much
better and are much more concise than MDTs induced from BLAs. Due to the extended
expressiveness of MDT leaves, they also outperform ordinary decision trees (ODTs), both
in terms of accuracy and conciseness. MDTs are usually so small that they can easily
be interpreted: we regard this as a step towards a comprehensible model of combining
classifiers by explicitly identifying their relative areas of expertise. In contrast, most existing
work uses non-symbolic learning methods (e.g., neural networks) to combine classifiers
(Merz, 1999).
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MDTs can use the diversity of the base-level classifiers better than voting: they outper-
form voting schemes in terms of accuracy, especially in domains with high diversity of
the errors made by the base-level classifiers. MDTs also perform slightly better than the
SCANN method for combining classifiers and the Select-Best method, which simply takes
the best single classifier. Finally, MDTs induced from CDPs perform better than boosting
and bagging of decision trees and are thus competitive with state of the art methods for
learning ensembles.

MDTs built by using CDPs are domain independent and are, in principle, transferable
across domains once we fix the set of base-level learning algorithms. This in the sense that
a MDT built on one data set can be used on any other data set (since it uses the same set
of attributes). There are several potential benefits of the domain independence of MDTs.
First, machine learning experts can use MDTs for domain independent analysis of relative
areas of expertise of different base-level classifiers, without having knowledge about the
particular domain of use. Furthermore, an MDT induced on one data set can be used for
combining classifiers induced by the same set of base-level learning algorithms on other
data sets. Finally, MDTs can be induced using data sets that contain examples originating
from different domains.

Exploring the above options already gives us some topics for further work. Combining
data from different domains for learning MDTs is an especially interesting avenue for further
work that would bring together the present study with meta-level learning work on selecting
appropriate classifiers for a given domain (Brazdil & Henery, 1994). In this case, attributes
describing individual data set properties can be added to the class distribution properties
in the meta-level learning data set. Preliminary investigations along these lines have been
already made (Todorovski & Džeroski, 2000).

There are several other obvious directions for further work. For ordinary decision trees,
it is already known that post-pruning gives better results than pre-pruning. Preliminary
experiments show that pre-pruning degrades the classification accuracy of MDTs. Thus,
one of the priorities for further work is the development of a post-pruning method for meta
decision trees and its implementation in MLC4.5.

An interesting aspect of our work is that we use class-distribution properties for meta-
level learning. Most of the work on combining classifiers only uses the predicted classes and
not the corresponding probability distributions. It would be interesting to use other learning
algorithms (neural networks, Bayesian classification and SCANN) to combine classifiers
based on the probability distributions returned by them. A comparison of combining clas-
sifiers using class predictions only vs. with class predictions along with class probability
distributions would be also worthwhile.

The consistency of meta decision trees with common sense classifiers combination knowl-
edge, as briefly discussed in Section 3, opens another question for further research. The
process of inducing meta-level classifiers can be biased to produce only meta-level classi-
fiers consistent with existing knowledge. This can be achieved using strong language bias
within MLC4.5 or, probably more easily, within a framework of meta decision rules, where
rule templates could be used.

Appendix: Tables with experimental results
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Table 8. Sizes (in number of nodes) of MDTs induced with MLC4.5 and ODTs induced with AC4.5 and C4.5.

Domain C-C4.5 C-AC4.5 MDT-CDP MDT-BLA MDT-CDP+BLA

australian 35.78 55.48 3.66 183.79 220.49

balance 32.75 91.85 1.12 1.02 1.16

breast-w 6.14 17.04 1.00 73.49 76.19

bridges-td 7.70 12.60 2.30 19.70 41.32

car 43.36 148.76 5.32 117.52 123.36

chess 10.20 15.82 2.06 75.05 79.39

diabetes 79.34 69.80 4.30 4.68 6.06

echo 22.22 45.70 2.08 2.98 4.48

german 100.22 75.14 5.64 517.40 535.05

glass 51.16 211.22 3.40 2.98 3.62

heart 21.36 44.48 1.82 63.68 64.72

hepatitis 15.76 33.82 1.70 49.62 49.77

hypo 4.70 24.92 1.18 37.16 41.23

image 65.69 306.11 4.24 7.08 11.10

ionosphere 18.96 37.40 3.28 2.98 4.00

iris 5.73 13.04 1.84 1.00 1.88

soya 80.03 480.27 1.68 71.44 75.98

tic-tac-toe 7.28 28.78 3.12 64.14 70.18

vote 9.18 24.78 1.16 104.99 129.31

waveform 344.19 255.26 6.34 4.14 7.66

wine 4.44 12.74 1.36 1.00 1.36

Average 46.01 95.48 2.79 66.94 73.73
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Notes

1. A patch that can be used to transform the source code of C4.5 into MLC4.5 is available at http://ai.ijs.si/
bernard/mdts/.

2. The experiments with bagging and boosting have been performed using the WEKA data mining suite (Witten
& Frank, 1999) which includes J48, a Java re-implementation of C4.5. The differences between the J48 results
and the C4.5 results are negligible: an average of 0.01% with a maximum relative difference of 4%.
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