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Abstract

Equation discovery approaches to automated modeling from observed data usually derive equation-based models from scratch
rather than from an initial model already established in the domain of use. In this paper, we present an approach that uses new
or recent observational data to improve an existing equation-based model. The approach is used to reduce the error of the Earth
ecosystem model of the net production of carbon in the atmosphere. We revise the initial ecosystem model in two directions.
First, we calibrate the values of the constant parameters in the model on new observational data. Second, we allow the use of
alternative equation structures for some of the sub-models of the initial model and use our approach to choose among them.
Experiments show that both revision of values of the constant parameters and revision of the structures of sub-models can
considerably reduce the error of the initial model.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Machine learning methods can help human experts
to discover new and interesting knowledge in collec-
tions of measured data. A variety of machine learning
methods have been successfully used for compu-
tational discovery of knowledge about ecosystems
(Džeroski, 2001). Knowledge discovered by machine
learning methods is usually expressed in the form of
decision trees and rules. Although these formalisms
are established as a standard notation in the area of
machine learning, they are not widely used in Earth
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science. The discovered knowledge would be more
accessible to Earth scientists if methods for discov-
ery of quantitative laws, expressed in the form of
equations, were used.

Equation discovery is the area of machine learning
that develops methods for automated discovery of
equations from measured data(Langley et al., 1987).
Early research in this area focused on the problem
of rediscovering known models and laws in different
areas of science. More recent work in the area has
led to methods capable of new discoveries. Recently
developed equation discovery methods have also been
successfully applied to different tasks of modeling
real-world ecosystems from measured data(Džeroski
et al., 1999).
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Despite this progress, there are still some important
limitations of these methods. Namely, the state-of-
the-art equation discovery methods make use of a very
limited portion of the theoretical knowledge available
in the domain of interest. An important aspect of the
domain knowledge that is neglected by the equation
discovery systems are the existing models in the do-
main. Rather than starting the search with an existing
equation-based model, current equation discovery
systems always start their search from scratch. In
contrast with them, theory revision systems(Ourston
and Mooney, 1994; Wrobel, 1996)start with an ex-
isting theory and use heuristic search to revise the
theory in order to improve its fit to newly acquired
observational data. However, theory revision research
is mainly concerned with the revision of theories,
expressed in propositional or first-order logic.

In this paper, we propose a flexible, grammar-based
approach to the task of revising models, based on
equation discovery. First, the given existing model
is transformed into a grammar. Domain expert can
then extend this initial grammar with alternative pro-
ductions specifying alternative modeling decisions.
The extended grammar built in this manner specifies
the space of possible revisions of the initial model.
Therefore, in the last step, the grammar-based equa-
tion discovery method Lagramge (Todorovski and
Džeroski, 1997)is applied to search through the space
of possible revisions and find the one that fits the newly
measured data best. The proposed approach allows
for the use of the minimal revision principle: among
models of similar goodness of fit to the data, the ones
that are closer to the initial model are to be preferred.
The use of the proposed approach is illustrated on the
problem of revising an equation-based model of the
net production of carbon by terrestrial plants in the
Earth ecosystem(Potter and Klooster, 1997, 1998,
1999).

The paper is organized as follows. The following
section gives a brief review of the CASA Earth ecosys-
tem model.Section 3gives a brief introduction to
equation discovery and a presentation of the grammar-
based equation discovery method Lagramge. The
grammar based approach to the task of revising
equation-based models is presented inSection 4.
Section 5presents the experiments in revising the
CASA Earth ecosystem model. The review of the re-
search work related to the one presented in the paper

is given inSection 6. TheSection 7summarizes and
concludes the paper.

2. A quantitative model of the Earth ecosystem

Data from the latest generation of satellites, com-
bined with readings from ground sources, hold great
promise for testing and improving on existing scien-
tific models of the Earth’s biosphere. One such model,
CASA, developed byPotter and Klooster (1997,
1998, 1999)at NASA Ames, accounts for the global
production and absorption of biogenic trace gases in
the Earth atmosphere, as well as predicting changes in
the geographic patterns of major vegetation types (e.g.
grasslands, forest, tundra, and desert) on the land.

CASA predicts, with reasonable accuracy, annual
global fluxes in trace gas production as a function of
surface temperature, moisture levels, and soil prop-
erties, together with global satellite observations of
the land surface. The model incorporates difference
equations that represent the terrestrial carbon cycle, as
well as processes that mineralize nitrogen and control
vegetation type. These equations describe relations
among quantitative variables and lead to changes in
the modeled outputs over time. Some processes are
contingent on the values of discrete variables, such
as soil type and vegetation, which take on different
values at different locations. CASA operates on grid-
ded input at different levels of resolution, but typical
usage involves grid cells that are eight kilometers
square, which matches the resolution for satellite
observations of the land surface.

To run the CASA model, the difference equations
are repeatedly applied to each grid cell independently
to produce new variable values on a daily or monthly
basis, leading to predictions about how each variable
changes, at each location, over time. Although CASA
has been quite successful at modeling Earth’s ecosys-
tem, there remain ways in which its predictions differ
from observations, suggesting that we invoke compu-
tational discovery methods to improve its ability to fit
the data. The result would be a revised model, cast in
the same notation as the initial one, that incorporates
changes which are interesting to Earth scientists and
which improve our understanding of the environment.

Because the overall CASA model is quite complex,
involving many variables and equations, we decided
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Table 1
Variables used in the NPPc portion of the CASA model

NPPc is the net production of carbon by terrestrial plants at
a site

E is the photosynthetic efficiency at a site after factoring
various sources of stress

T1 is a temperature stress factor (0< T1 < 1) for cold weather
T2 is a temperature stress factor (0< T2 < 1), nearly Gaussian

in form but falling off more quickly at higher temperatures
W is a water stress factor (0.5< W < 1)
topt is the average temperature for the month at which

fas ndvi takes on its maximum value at a site
tempcis the average temperature at a site for a given month
eet is the estimated evapotranspiration (water loss due to

evaporation and transpiration) at a site
PET is the potential evapotranspiration (water loss due to

evaporation and transpiration given an unlimited water
supply) at a site

pet tw m is a component of potential evapotranspiration that
takes into account the latitude, time of year, and days in
the month

A is a polynomial function of the annual heat index at a site
ahi is an annual heat index that takes the time of year into

account
fas ndvi is the relative greenness as measured from space
IPAR is the energy intercepted from the sun after factoring in

the time of year and days in the month
FPARFAS is the fraction of energy intercepted from the sun

that is absorbed photosynthetically after factoring in
vegetation type

monthlysolar is the average radiation incoming for a given
month at a site

SOLCONV is 0.0864 times the number of days in each month

to focus on one portion that lies on the model’s
‘fringes’ and that does not involve any difference
equations.Table 1describes the variables that occur
in this sub-model, in which the dependent variable,
NPPc, represents the net production of carbon by
terrestrial plants. AsTable 2indicates, the model pre-
dicts this quantity as the product of two unobservable
variables, the photosynthetic efficiency,E, at a site
and the solar energy intercepted,IPAR, at that site.

Photosynthetic efficiency is in turn calculated as
the product of the maximum efficiency (0.389) and
three stress factors that reduce this efficiency. One
stress term,T2, takes into account the difference
between the optimum temperature,topt, and actual
temperature,tempc, for a site. The second factor,T1,
involves the nearness oftopt to a global optimum
for all sites. The third term,W, represents stress that
results from lack of moisture as reflected byeet, the

Table 2
Equations used in the NPPc portion of the CASA model

NPPc= max(0, E · IPAR)

E = 0.389· T1 · T2 · W

T1 = 0.8 + 0.02 · topt− 0.0005· topt2

T2 = 1.1814/((1 + e0.2·(TDIFF−10)) · (1 + e0.3·(−TDIFF−10)))
TDIFF = topt− tempc

W = 0.5 + 0.5 · eet/PET
PET = 1.6 · (10 · max(tempc, 0)/ahi)A · pet tw m

A = 0.000000675·ahi3 −0.0000771·ahi2

+ 0.01792· ahi + 0.49239
IPAR = FPARFAS· monthlysolar · SOLCONV· 0.5

FPARFAS= min((SRFAS− 1.08)/srdiff, 0.95)
SRFAS= (1 + fas ndvi/1000)/(1 − fas ndvi/1000)

SOLCONV = 0.0864· daysper month

estimated water loss due to evaporation and transpi-
ration, andPET, the water loss due to these processes
given an unlimited water supply. In turn,PET is de-
fined in terms of the annual heat index,ahi, for a site,
andpet tw m, a modifier onPET to account for day
length at differing locations and times of year.

The energy intercepted from the sun,IPAR, is com-
puted as the product ofFPARFAS, the fraction of
energy absorbed photosynthetically for a given vege-
tation type,monthlysolar, the average radiation for a
given month, andSOLCONV, the number of days in
that month.FPARFASis a function offas ndvi, which
indicates overall greenness at a site as observed from
space, andsrdiff, an intrinsic property that takes on
different numeric values for different vegetation types.

Of the variables we have mentioned,NPPc, tempc,
ahi, monthlysolar, SOLCONV, andfas ndvi, are ob-
servable. Two additional terms—eet and pet tw m—
are defined elsewhere in the model, but we assume
their definitions are correct and thus, we can treat
them as observables. The remaining variables are
unobservable and must be computed from the others
using their definitions. This portion of the model also
contains a number of numeric parameters, as shown
in the equations inTable 2.

3. Grammar-based equation discovery

Equation discovery is the area of machine learn-
ing that develops methods for automated discovery of
quantitative laws, expressed in the form of equations,
in collections of measured data(Langley et al., 1987).
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The task of equation discovery can be formalized as
follows. Given: (1) a set of system variablesV =
{v1, . . . vn} of the observed system, including a target
variablevd ∈ V and (2) a table of observations (mea-
sured values) of the system variables;find a modelM
formulated as a set of ordinary algebraic or differential
equations defining the target variablevd. The model
M is expected to minimize the discrepancy between
the observed values of the target variablevd and the
values ofvd obtained with simulatingM.

Equation discovery methods address the above task
by decomposing it into two sub-tasks. The first is
the model identification problem sub-task where an
appropriate structure has to be determined for the
equations involved in the model. The second is the pa-
rameter estimation sub-task where acceptably accurate
values for the constant parameters in the equations are
to be determined. For the second sub-task, standard
non-linear optimization techniques are used in order
to fit the values of the constant parameters against the
observed data(Press et al., 1986).

For solving the model identification task, heuristic
search through the space of possible equations struc-
tures is used. The search is guided using a heuristic
function that measures the quality of the current equa-
tion structure. The quality is estimated as discrepancy
between measured data and data obtained with sim-
ulating the equation with the optimized values of the
constant parameters. More precisely, the discrepancy
is calculated as sum of squared errors (SSE), i.e. sum
of squared distances between the observed and simu-
lated values of the dependent variablevd (Todorovski
and Džeroski, 1997).

Note however, that the space of candidate equa-
tion structure to be explored during the search is
potentially huge. The problem of the huge space of
equation structures makes the sub-task of determining
the appropriate equation structure very difficult. The
equation discovery system Lagramge (Todorovski
and Džeroski, 1997)addresses this problem by allow-
ing the user to specify the space of possible equation
structures. Thus, a user of Lagramge has an op-
portunity to tailor the space of equation structures
according to the modeling knowledge in the particular
domain of interest. The search is then focused to equa-
tion structures which make sense from the domain
scientist’s point of view. The discovered equation can
be understood and interpreted better and more easily.

The space of possible equations in Lagramge
is specified in the form of a context-free grammar
(Hopcroft and Ullman, 1979). A context-free gram-
mar contains a finite set of variables (also called
non-terminals or syntactic categories) each of which
represents expressions or phrases in a language. The
expressions represented by each non-terminal are
described in terms of the same and other non-terminals
and primitive symbols called terminals. The rules
relating the non-terminals among themselves and
to terminals are called productions. In the case of
equations, a non-terminal symbol represents a set of
alternative arithmetical expressions that can appear
in equations, while terminals are used to denote sys-
tem variables, constant parameters and arithmetical
operators.

Although the motivation for development of con-
text-free grammars was the syntactic description of
natural languages, the formalism is powerful enough
to express different aspects of the modeling knowledge
in the domain of interest(Todorovski and Džeroski,
1997, 2001; Todorovski et al., 1998). For exam-
ple, a grammar based on knowledge about typical
models of basic population dynamics processes was
used in Lagramge for successful modeling of phy-
toplankton growth in Lake Glumsoe(Todorovski
et al., 1998). Ecological modeling domain knowledge
was essential for the successful use of equation dis-
covery (automated modeling) on the basis of very
sparse measurements taken over a short period of two
months.

The successful application of Lagramge in the
Lake Glumsoe domain shows the importance of
using theoretical modeling knowledge from the do-
main of interest in the process of equation discovery.
An important aspect of domain knowledge that is
neglected by current equation discovery methods,
including Lagramge, are the existing models in the
domain. Equation discovery methods ignore existing
models and always start their search for an appro-
priate model structure from scratch. An alternative
approach would be to start with an existing model
and try to find an appropriate change of its structure
so that the revised model better fits newly collected
observational data. As we will show in the following
section, the formalism of grammars can be also used
to integrate existing models in the process of equation
discovery.
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4. Grammar-based revision of equation models

To revise an existing model, we follow the
Lagramge tradition and we use the formalism of
context-free grammars to incorporate an existing
model in the process of equation discovery. First,
we transform existing model into an initial gram-
mar that generates the initial model only and reflects
its structure. Next, the initial grammar is extended
adding alternative productions that allow changes of
the initial model. The extended grammar specifies
the space of possible revisions to the initial model.
Then, Lagramge with the extended grammar is used
to chose among the possible revisions the one that fits
the newly collected observational data best. Finally,
minimality of change (MC) heuristic function is im-
plemented in Lagramge to support the MC principle.
Each aspect of the approach is explained in detail in
the following sections.

4.1. From an initial model to an initial grammar

In a typical setting of revising an existing scien-
tific model, we would only have observational data
and a model, i.e. an equation developed by scientists
to explain a particular phenomenon. A grammar that
would explain how this model was actually derived
and provide options for alternative models is typically
not available. The above is especially true for simpler
models.

However, when the model (equation) is complex, it
is only rarely written as a single equation defining the
target variable, but rather as a set of equations defining
the target variable, which typically contains equations
defining intermediate variables. The latter typically
define meaningful concepts in the domain of dis-
course. Often, alternative equations defining an inter-
mediate variable would be possible and the modeling
scientist would choose one of these: the alternatives
would rarely (if ever) be documented in the model
itself, but might be mentioned in a scientific article de-
scribing the derived model and the modeling process.

A set of equations defining a target variable through
some intermediate variables can easily be turned into
a grammar, as demonstrated inTable 3. The presented
grammar generates the equations used in the NPPc
portion of the CASA model (seeTable 2in Section 2).
Each intermediate variable in the NPPc portion of

Table 3
Grammar derived from the equations for the NPPc variable in the
CASA model inTable 2

NPPc-> max(0,E*IPAR)
E-> 0.389*T1*T2*W
T1-> 0.8+0.02*topt-0.0005*topt*topt
T2-> 1.1814/((1+exp(0.2*(TDIFF-10)))

*(1+exp(0.3*(-TDIFF-10))))
TDIFF-> topt-tempc
W-> 0.5+0.5*eet/max(PET,0)
PET-> 1.6*pow(10*max(tempc,0)/ahi,A)

*pet tw m
A-> 0.000000675*ahi*ahi*ahi-0.0000771

*ahi*ahi+0.01792*ahi+0.49239
IPAR-> FPAR FAS*solar*SOL CONV*0.5
FPAR FAS-> min((SR FAS-1.08)/srdiff,0.95)
SR FAS-> (1+fas ndvi/1000)/

(1-fas ndvi/1000)
SOL CONV-> 0.0864*days per month

The grammar generates the equations of the initial model only.

the CASA model has a corresponding non-terminal
symbol in the grammar. Each non-terminal symbol
has a single production that generates the equation
from the CASA model that is used to calculate the
corresponding intermediate variable. The terminal
symbols of the grammar reflect those CASA vari-
ables that are observables (tempc, ahi, monthlysolar,
daysper month and fas ndvi) or intermediate vari-
ables defined in other portions of the CASA model
that are treated as observables (eetandpet tw m).

Using the initial grammar fromTable 3 only the
NPPc portion of the initial CASA model fromTable 2
can be generated. In order to allow revisions of the
initial model, we should extend the grammar and
specify which parts of the model can be changed and
specify the allowed changes.

4.2. From an initial to an extended grammar

Having the grammar inTable 3enables us to spec-
ify alternative models through providing additional
productions for the non-terminal symbols in the gram-
mar. The additional productions for a non-terminal
symbol (or corresponding intermediate variable)
specify alternative modeling choices, of which only
one will eventually be chosen for the final model.
Note however, that the revised model can incorporate
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an arbitrary combination of the choices made for
individual intermediate variables.

Note that when alternative productions are specified
for an intermediate variable, there are no restrictions
(at least in principle) on these productions. For ex-
ample, they can introduce new intermediate variables
and productions defining them. They can also specify
arbitrary functional forms (in the case of equations).
However, they do have to eventually derive (in the con-
text of the entire grammar) valid sub-expressions in-
volving the set of terminal symbols (system variables)
associated to the initial model.

A very common alternative production would re-
place a particular constant value with a generic con-
stant, allowing the equation discovery system to refit
its value to the given observational data. That change
can be achieved by replacing a terminal symbol repre-
senting a constant parameterv with a generic symbol
const that allows for an arbitrary value of the particu-
lar constant parameter. For example, consider the pro-
ductionE->0.389*T1*T2*W. The alternative pro-
ductionE->const[:v:]*T1*T2*W allows for an
arbitrary value of the constant parameter (keeping its
initial value atv). Often, more restricted changes of
constant values are desirable:const[0:v:] would
allow arbitrary non-negative value of the constant pa-
rameter. Similarly, a more specific terminal symbol
const[0:v:2*v] would allow for a 100% relative
change of the initial valuev of the constant parameter.

A slightly more complex alternative production
would replace a particular polynomial on the right-
hand-side of a production with an arbitrary polynomial
of the same (intermediate) variables. For example,
consider the production for the non-terminal symbol
T1. It specifies that the value of the variableT1 is
calculated using a second degree polynomial. We can
allow an arbitrary polynomial to be used for calculat-
ing T1 by adding the two alternative productions for
the non-terminalT1 presented inTable 4.

The first alternative production is used to derive the
simplest polynomial (of degree zero), which actually

Table 4
Two alternative productions that allow an arbitrary polynomial to
be used for calculating the value of the intermediate variableT1

T1->const
T1->const+(T1)*topt

definesT1 as a constant value to be fitted against
data. The second production fromTable 4 can be
repetitively used to derive an arbitrary degree poly-
nomial in the following manner. We start with the
initial expressionT1. Applying the second produc-
tion to the initial expression once we derive the ex-
pressionconst+(T1)*topt. When applying the
second production to the newly derived expression,
the non-terminalT1 is replaced by the right-hand
side of the production rule, obtaining the expression
const+(const+(T1)*topt)*topt. At this
point, we can decide to apply the first production to
generate the terminal expressionconst+(const+
(const)*topt)*topt. On the other hand, if we
decide to apply the second production once more, we
will obtain a third degree polynomial. In general, the
degree of the derived polynomial is equal to the num-
ber of applications of the second production during
the derivation.

In the examples above, we presented several possi-
ble extensions of the initial grammar. However, it is
also possible to add alternative productions that allow
for derivation of an arbitrary arithmetical expression.
Therefore, the approach is general in the sense that it
can be used to specify arbitrary revisions of the initial
model.

4.3. Minimality of change principle

While the approach presented above does take into
account the initial model, it may allow for a completely
different model to be derived, depending on whether
and what kind of productions for alternative models
are provided for each of the intermediate variables.
It is here that the minimal revision/change principle
comes into play: among theories of similar quality (fit
to the data), theories that are closer to the initial theory
are to be preferred.

The crucial concept that is necessary in order to
implement the MC principle is the measure of change
or distance between the (potential) revised model
and the initial model. Since parse trees are used in
Lagramge to represent models, we use a measure of
distance between tree structured terms as a measure
of distance between models. Thus, the distance mea-
sure we use assesses syntactic structural distance, i.e.
the amount of change in the structure of the equations
of the model.
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A common approach to computing distances be-
tween strings or tree structured terms is theeditingap-
proach, leading toedit distance measure(Shasha and
Zhang, 1997). Following the editing approach, a set of
basic edit operations is first defined. The edit opera-
tions available for editing trees are relabeling (chang-
ing the label), deleting and inserting a node in the tree.
Costs are assigned to these operations, depending on
the labels of the nodes involved in them. The problem
of computing the distance between two tree structured
termsT1 andT2 is then transformed to the problem
of finding a minimal cost sequence of basic editing
operations that transforms a treeT1 into a treeT2.

Since the models in Lagramge are represented as
grammar parse trees, we decided to use a refined edit
distance measure, that can be efficiently calculated on
parse-trees, presented in(Richter, 1997). Before using
the measure, we have to define the costs of the basic
edit operation of deletion, insertion, and relabeling.
The costs of the basic edit operations are defined as
follows:

Deleting a nodehas a cost of 1.
Inserting a nodehas a cost of 1.
Relabeling a nodehas a cost of 1, if the label is

actually changed, or 0 otherwise. Note that for
non-terminal symbols that denote constant pa-
rameters, the actual value of the constant param-
eter is used a label.

Once we have defined a distance measure between
models, we can incorporate it into Lagramge by mod-
ifying the MDL heuristic function used in Lagramge
to introduce preference toward simpler equations. The
MDL heuristics takes into account the complexity of
an equation along with its goodness of fit to the data
(Todorovski and Džeroski, 1997), i.e.

MDL (M) = SSE(M) + l(M)

10 · lmax
· SSE(M0),

where SSE(M) is the sum of squared errors of the cur-
rent model on the training data, SSE(M0) is the error
of the simplest model,l(M) is the length of the current
model M (in number of terminal symbols) andlmax
the length of the most complex equation is the search
space. Since the Lagramge search space consists of
parse trees with limited depth, the maximal lengthlmax
can be easily computed in advance. Roughly speak-
ing, the second part of the MDL heuristic function of

Lagramge adds a penalty for equation complexity to
the sum of squared errors.

By analogy to the MDL heuristic, we can define
MC heuristic function as follows:

MC(M) = SSE(M) + distance(M, M0)

C
· SSE(M0),

where distance(M, M0) is the distance between the
current modelM and the initial modelM0. Note that
the maximal distance is not available as in the case
of maximal length for MDL, so we introduce a user
defined parameterC. This parameter can be used to
trade-off between goodness of fit of the current model
and MC with respect to the initial model. Large values
of C will diminish the “change penalty” term of the
MC heuristic, leading to a preference toward accurate
models, not necessarily similar to the initial one. On
the other hand, small values ofC will increase the
“change penalty” term, leading to a preference toward
models that are similar to the initial modelM0.

5. Experiments in revising an Earth science model

We illustrate the use of the proposed framework for
theory revision in equation discovery on the problem
of revising one part of the Earth science CASA model
(Potter and Klooster, 1997, 1998, 1999), described in
Section 2. The values of the input variables (terminal
symbols in the grammar fromTable 2) were measured
(and/or calculated) for 303 locations on the Earth pro-
viding a data set with 303 examples. Measured NPPc
was commonly determined by sampling the accumu-
lated biomass amount of the standing vegetation and
adjusting for the age of the vegetation community sam-
pled, in order to estimate the yearly NPPc carbon flux.1

The training data set used in the experiments of
CASA-NPPc model revision consists of 303 data
points. Each data point contains measurements of the
observed system variables for a distinct location on
Earth.

The quality of the revised models is assessed
through the discrepancy between the predicted

1 Data provided by the Global Primary Productivity Data Initia-
tive (GPPDI) NPP Working Groups and Ecosystem Model-Data
Intercomparison (EMDI) activity of the International Geosphere
Biosphere Program Data and Information System (IGBP-DIS),
Oak Ridge National Laboratory.
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and observed values of the dependent variable:
the smaller the discrepancy, the better the model.
The discrepancy is measured using standard root
mean squared error (RMSE) measure, calculated as:√∑303

i=1(NPPci − N̂PPci)2/303, where NPPci and

N̂PPci are the observed and the predicted value of
NPPc, respectively. The RMSE of the initial model
on the training data set is 517.665.

In order to estimate the error of the revised models
on test data unseen during the process of revision,
we applied a 30-fold cross validation methodology.
Following this methodology, the data set consisting
of 303 examples is randomly partitioned into 30
partitions, with approximately the same number of
examples (10) in each of them. In each iteration of the
cross-validation procedure, 29 out of 30 partitions are
used as a training data set for revision of the initial
model and the revised model is then used to predict
the values of the dependent variableNPPcon the re-
maining partition, unseen during the revision phase.
By repeating this iteration thirty times, once for each
partition, we obtain 303 predictions of theNPPc
value for all the data points in the training data set.

5.1. A grammar for the revision of the
CASA-NPPc model

As described inSection 4, the given CASA-NPPc
model was first transformed into the initial grammar
presented inTable 3. In addition, alternative predic-
tions were added to this initial grammar for the four
intermediate variables for which experts pointed out

Table 5
Alternative productions added to the initial grammar fromTable 3

Ec-100:E-> const[ :0:0.389:0.778]*T1*T2*W
Es-exp:E-> const[ :0:0.389:0.778]*pow(T1,const[ :0:1:])*pow(T2,const[ :0:1:])

*pow(W,const[ :0:1:])

T1c-100:T1-> const[ :0:0.8:1.6]+const[ :0:0.02:0.04]*topt-const[ :0:0.0005:0.001]
*topt*topt

T1s-poly:T1-> const|const+(T1)*topt
T2c-100:T2-> const[ :0:1.1814:2.3628]/((1+exp(const[ :0:0.2:0.4]

*(TDIFF-const[ :0:10:20])))*(1+exp(const[ :0:0.3:0.6]
*(-TDIFF-const[ :0:10:20]))))

T2s-poly:T2-> const|const+(T2)*TDIFF
SR FASc-25:SR FAS-> (1+fas ndvi/const[ :750:1000:1250])/(1-fas ndvi/const[ :750:1000:1250])

Each of them specifies one or more revisions of the initial CASA-NPPc model.

that they are not very confident in the equations used
to calculate their values. Each of these alternative
productions specifies one or more possible revisions
of the initial CASA-NPPc model. The complete list
of alternative productions added to the initial gram-
mar is given inTable 5. The productions are further
discussed below.

Alternative productions for E

Ec-100 allows a revision of the constant pa-
rameter (with the initial value of 0.389) in
the equation for the intermediate variableE.
The alternative production allow for a 100%
relative change of the initial value of the
constant parameter.

Es-exp allows for a replacement of the three
terms product from the initialE equation
(i.e. the productT1 · T2 ·W) with a product
that allows for arbitrary non-negative expo-
nents on these terms (i.e. a product of the
form T1c1 · T2c2 · Wc3). The initial values
of the exponents are set to 1, in which case
the product is equivalent to the product in
the initial E equation.

Alternative productions for T1

T1c-100 allows for a 100% relative change
of the initial values of the constant parame-
ters in theT1 equation.

T1s-poly allows for a replacement of the
initial second degree polynomial that de-
fines the value ofT1 with an arbitrary
degree polynomial of the variabletopt. In
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Table 6
The root squared mean error (RMSE) of the revised model, the percentage of relative error reduction (RER) of the RMSE of the revised
model when compared to the RMSE of the initial CASA-NPPc model (with RMSE of 517.665) and distance (DIST) of the revised model
from the initial one

Alternative production(s) Training CV

RMSE RER (%) DIST RMSE RER (%) DIST

Ec-100 458.626 11.40 1 459.212 11.29 1.0
Es-exp 442.763 14.47 16 447.456 13.56 16.0

T1c-100 458.301 11.47 3 460.352 11.07 3.0
T1s-poly 450.265 13.02 46 455.819 11.95 46.0

T2c-100 457.048 11.71 3 457.926 11.54 3.0
T2s-poly 450.972 12.88 71 463.757 10.41 75.8

SR FASc-25 441.419 14.73 2 441.419 14.73 2.0

All combined 411.627 20.48 60 421.758 18.53 62.6

The RMSE was estimated both on training data and using 30-fold cross-validation.

addition, the maximal depth of the parse
trees considered by Lagramge was set to
allow a maximal polynomial degree of five.

Alternative productions for T2

T2c-100 allows 100% relative change of the
initial values of the constant parameters in
the equation forT2.

T2s-poly allows for replacement of the ini-
tial equation that defines the value ofT2with
an arbitrary degree polynomial of the vari-
ableTDIFF. Again, the maximal degree of
the polynomial was limited to five.

Alternative productions for SRFAS

SR FASc-25 allows for a 25% relative
change of the initial values of the constant
parameters in theSRFAS equation. The
relative change of 25% was used to avoid
values of the constant parameters lower
than 750, which would cause singularity
(division by zero) problems in the equation
for SRFAS.

Note, however, that an arbitrary combination of
these alternative productions can be added to the ini-
tial grammar. If all the alternative productions are
added at the same time, then Lagramge will find the
most beneficial combination of revisions, i.e. the one
that leads to the best revision of the initial model.

5.2. Experimental results

The results of the experiments with the different
modeling (revision) alternatives, discussed above are
summarized inTable 6.

When we allow only a single of the seven presented
alternatives (the first seven rows ofTable 6), revising
the value of the constant parameters in the equation
for calculatingSRFASgives the largest reduction of
the error of the initial CASA-NPPc model. The ini-
tial values of the parameters (both are equal to 1000)
define an almost linear dependence ofSRFASon the
observed system variablesrdiff. The revised values
of the constant parameters were equal to 750 (lower
bound values), which increase the non-linearity of the
dependence. In terms of consistency of the revision
with Earth science knowledge, we should note that the
Earth scientists’ confidence in the range of thesrdiff
variable is low due to the limited terrestrial coverage of
the NPPcmeasurements. Therefore, the theoretically
based argument for high initial values of the constant
parameters in theSRFASequation is not so strong.

The analysis of the results of the individual struc-
tural revisions shows the following. TheT1s-poly
revision replaces the initial second-degree polynomial
for calculating T1 with a fifth degree polynomial.
The structural revisionT2s-poly replaced the com-
plex initial equation structure for calculatingT2 with
a fourth degree polynomial. While the initial form
of the T2 equation is fairly well grounded in first
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principles of plant physiology, it has not been exten-
sively verified from field measurements. Therefore,
both empirical improvements are beneficial.

The most interesting structural revision was the one
for theE equation:

E = 0.610· T12.83 · T20.638 · W0

The proposed value of 0 for the exponent of the water
stress factorW suggests that the water stress factor
is not important for predicting the photosynthetic
efficiency E. Earth scientists proposed as a possi-
ble explanation for this the fact that the influence of
the water stress factor is already being captured by
the satellite measurements of the relative greenness
fas ndvi.

The results of the experiments with searching for
the optimal combination of all the alternative revi-
sions are presented in the last row ofTable 6. As ex-
pected, the optimal combination leads to the maximal
relative reduction of the RMSE of more than 20% on
the training data and 18.5% when cross-validated. The
combination ofEs-exp,T1s-poly,T2c-100, and
SR FASc-25 alternative productions leads to the best
revised model, presented inTable 7.

After the initial experiments with the revision of the
CASA-NPPc model presented here, Earth scientists
that developed the CASA model, decided to change
the value of the constant parameter in theE equation
from 0.389 to 0.56, independently from our experi-
ments. This change reduces the RMSE of the initial
CASA-NPPc model on the training data from 517.665
to 465.213. After rerunning the revision experiments

Table 7
The revised CASA-NPPc model obtained by allowing an arbitrary combination of modeling alternatives fromTable 5

The parts of the models that are not revised are printed in grey.

with the new initial CASA-NPPc model, we obtained
the results presented inTable 8.

The revisions of the new corrected initial CASA-
NPPc model lead to smaller relative reduction of the
RMSE. The maximal error reduction of almost 11%
on the training data and 9% when cross-validated is
obtained when an arbitrary combination of modeling
alternatives is allowed. The best revised model, ob-
tained using the combination ofEs-exp, T1c-100,
T2s-poly, and SR FASc-25 alternative produc-
tions, is presented inTable 7. Note that the experimen-
tal results also show that the reductions, obtained with
allowing a single alternative production at a time, sum
up, i.e. the error reduction obtained with the combina-
tion of alternative productions (almost) equals the sum
of the error reductions obtained with individual ones.

Note also that the error of the revision of the cor-
rected model on the training data (414.739) is slightly
higher than the error of the best model obtained with
revising the initial CASA-NPPc model (411.627, see
Table 6). This is due to the problems with the conver-
gence of the method for non-linear optimization of the
values of the constant parameters. It is well known that
these methods can not guarantee convergence toward
the global (or real) optimal values, but can stuck into a
local (sub-)optimal values that are closer to the initial
values of the constant parameters(Press et al., 1986).

The comparison of the revised models inTable 7
andTable 9shows that both revised models are similar.
Both of them suggest that theW(water stress) segment
should be removed from CASA-NPPc model, since it
is not important for calculatingE. Furthermore, both
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Table 8
The root squared mean error (RMSE) of the revised model, the percentage of relative error reduction (RER) of the RMSE of the revised
model when compared to the RMSE of the (corrected) initial CASA-NPPc model (with RMSE of 465.213) and distance (DIST) of the
revised model from the initial one

Alternative production(s) Training CV

RMSE RER (%) DIST RMSE RER (%) DIST

Ec-100 458.626 1.42 1 460.5 1.01 0.9
Es-exp 443.029 4.77 16 443.032 4.77 16.0

T1c-100 458.301 1.49 3 460.799 0.95 3.0
T1s-poly 450.265 3.21 46 457.37 1.69 45.8

T2c-100 457.018 1.76 3 459.633 1.20 3.0
T2s-poly 450.972 3.06 71 461.642 0.77 73.4

SR FASc-25 453.157 2.59 2 455.281 2.13 2.0

All combined 414.739 10.85 104 423.684 8.93 67.4

The RMSE was estimated both on training data and using 30-fold cross-validation.

revised models suggest a lower value (750) for the
constant parameter in theSRFAS equation. On the
other hand, the models suggest different revisions of
theT1 andT2 equations.

Finally, in the last series of experiments, we ex-
plored the influence of the MC principle on the revised
models. For this purpose, we used the MC heuristic
function (seeSection 4) in Lagramge with 7 differ-
ent values of theC parameter: 32, 64, 128, 256, 512,
1024 and 2048. Recall fromSection 4that theC pa-
rameter is used to trade-off between goodness-of-fit of
the model and MC with respect to the initial model:
smaller values lead to a higher preference toward mod-
els that are similar to the initial one.

Table 9
The new revised CASA-NPPc model obtained by allowing an arbitrary combination of modeling alternatives fromTable 5

The parts of the models that are not revised are printed in grey.

The results of these experiments are summarized
in Fig. 1. As expected, the distance of the revised
model from the initial model constantly increases as
we increase the value of theC parameter. The distance
is maximal when SSE heuristic function is used, i.e.
the MC principle is neglected. The trend of the relative
reduction of the error of the initial model, estimated on
training data, is the same: it constantly increases and
reaches maximum when the SSE heuristic function
is used. Thus, the more distant is revised model, the
more accurate it is on training data.

The revised model that is most similar to the ini-
tial one (i.e. the one found using MC heuristic with
C = 32) is obtained with revising the values of the
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Fig. 1. Relative error reduction and distance from the initial model for revised models obtained using SSE and MC heuristic function with
different values of theC parameter.

constant parameters (Ec-100 andSR FASc-25) of
the initial model, leading to an error reduction of
5.29%. This shows that the revisions of the initial
equations forE and especiallySRFASare necessary
and very important for the error reduction, even if we
prefer a minimal change of the initial CASA-NPPc
model. The analysis of the second revised model ob-
tained withC = 64 gives further support for this claim.
Namely, it leads to (almost maximal) error reduction of
8.84% with revising these two equations again. How-
ever, in this case, more complex structural revision
(Es-exp) of the initialE equation has been proposed.

The increasing trend of the performance of the re-
vised models on training data can easily lead to over-
fitting, especially in cases when arbitrary revisions are
allowed. Even in the experiments with a limited set of
revision alternatives performed here, we can see that
the cross-validated error reduction does not constantly
increase. Therefore, models that are closer to the
initial one can perform better on test data. In our ex-
periments, the model obtained using the MC heuristic
with C = 512 (error reduction of 9.10%) slightly out-
performs the model obtained using the SSE heuristic
(error reduction of 8.93%), when cross-validated. The
revised model, obtained using the MC heuristic with
C = 512, leaves theT2 equation unchanged and has
a structure that is otherwise identical to the structure
of the model inTable 9 (the values of the constant

parameters in the equations are slightly different).
This result shows that the revision of theT2 equation
is not really important for the reduction of the error
of the initial CASA-NPPc model.

6. Related work

The research presented in the paper is closely
related to several other lines of work.

In the first,Saito et al. (2001)address the same task
of revising models based on equations. Their approach
is based on transforming a part of the model into a neu-
ral network, retraining the neural network on newly
measured data, and transforming the trained network
back into an equation-based model. The obtained re-
vised models have a considerably smaller error rate
than the initial one. Their method gained slightly lower
reduction of the initial model error then our method.
Another limitation of their method is that it requires
some handcrafting to encode the equations as a neural
network—the authors state that “the need to translate
the existing CASA model into a declarative form that
our discovery system can manipulate” is a challenge
to their approach. Finally, their method not incorpo-
rate the MC principle.

The approach of transforming equation-based mod-
els to neural networks and use these for refinement
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is similar in spirit to the Kbann approach proposed
in Towell and Shavlik (1994). There, an initial theory
based on classification rules is first encoded as neural
network. Then, the topology of the network is refined
and the network is retrained with the newly observed
data. Finally, the network is transformed back into
rules. However, the application of Kbann is limited
to theories and models expressed in a form of classi-
fication rules.

Whigham and Recknagel (2000)consider the
task of revising an existing model for predicting
chlorophyll-a by using measured data. They use a ge-
netic algorithm to calibrate the equation parameters.
They also use a grammar-based genetic programming
approach to revise the structure of two parts (one at
a time) of the initial model. A most general grammar
that can derive an arbitrary expression using the al-
lowed arithmetic operators and functions was used for
each of the two parts. Unlike the work presented here,
Whigham and Recknagel (2000)do not present a
general framework for the revision of equation based
models. Their approach is similar to ours in that they
use grammars to specify possible revisions. However,
the grammars they use are too general to provide
much information about the domain at hand. Also,
they do not incorporate the MC principle in their ap-
proach. This can be considered as a weakness of their
approach, since genetic programming methods tend
to produce large expressions without simplicity bias.

7. Summary and conclusions

In this paper, we have proposed a flexible grammar-
based equation discovery approach to the task of re-
vising equation-based models. To support the revision
of existing models with equation discovery, we use
the transformation principle. First, the given existing
model is transformed into an initial grammar that can
be used to derive the initial given model only. The
non-terminals in the grammar and their productions
reflect the structure of the initial model. Domain ex-
perts can then focus on the revision process on parts
of the model and guide it by providing relevant mod-
eling alternatives that are added to the initial grammar
as alternative productions. In this way, the revision
process can be interactive, as is quite often the case
when revising theories expressed in logic. The method

also incorporate the minimality of change principle in
a way that allows a trade-off between the goodness of
fit of the revised model and its similarity to the initial
one.

We have applied our approach to the real-world
problem of revising a portion of an existing equation-
based model named CASA of the net production of
carbon by terrestrial plants in the Earth ecosystem.
Experimental results show that small revisions of both
the values of the constant parameters and the structure
of equations reduce the error of the model consider-
ably (by almost 20%). This improvement is regarded
as a non-trivial by Earth scientists that developed the
CASA model. Furthermore, the experiments with the
improved version of CASA-NPPc model also lead to
a revised model that is about 9% more accurate than
the initial one. The experiments also show the impor-
tance of the minimality of change (MC) principle in
model revision from two aspects. First, the use of the
MC principle can further reduce the error of the re-
vised model on test data, unused during the process of
revision. Second, it can be used to identify the set of
most important revisions that lead to largest reduction
of the error of the initial model.
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Scientific Discovery. MIT Press, Cambridge, MA.

Ourston, D., Mooney, R.J., 1994. Theory refinement combining
analytical and empirical methods. Artif. Intell. 66, 273–309.

Potter, C.S., Klooster, S.A., 1997. Global model estimates of
carbon and nitrogen storage in litter and soil pools: response
to change in vegetation quality and biomass allocation. Tellus
49B, 1–17.

Potter, C.S., Klooster, S.A., 1998. Interannual variability in soil
trace gas (CO2, N2O, NO) fluxes and analysis of controllers
on regional to global scales. Global Biogeochem. Cycles 12,
621–635.

Potter, C.S., Klooster, S.A., 1999. Dynamic global vegetation
modeling (dgvm) for prediction of plant functional types and
biogenic trace gas fluxes. Global Ecol. Biogeogr. Lett. 8,
473–488.



154 L. Todorovski et al. / Ecological Modelling 170 (2003) 141–154

Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterlin, W.T., 1986.
Numerical Recipes. Cambridge University Press, Cambridge,
MA.

Richter, T., 1997. A new measure of the distance between ordered
trees and its applications (technical report). Department of
Computer Science IV, University of Bonn, Bonn, Germany.

Saito, K., Langley, P., Grenager, T., Potter, C.S., Torregrosa,
A., Klooster, S.A., 2001. Computational revision of quantita-
tive scientific models. In: Proceedings of the Fourth Interna-
tional Conference on Discovery Science. Springer, Berlin,
pp. 336–349.

Shasha, D., Zhang, K., 1997. Approximate tree pattern matching.
In: Pattern Matching Algorithms. Oxford University Press,
London, pp. 341–371.

Todorovski, L., Džeroski, S., 1997. Declarative bias in equation
discovery. In: Proceedings of the Fourteenth International
Conference on Machine Learning. Morgan Kaufmann, Los
Altos, CA, pp. 376–384.

Todorovski, L., Džeroski, S. (2001). Using domain knowledge
on population dynamics modeling for equation discovery. In:
Proceedings of the Twelfth European Conference on Machine
Learning. Springer, Berlin, pp. 478–490.

Todorovski, L., Džeroski, S., Kompare, B., 1998. Modelling and
prediction of phytoplankton growth with equation discovery.
Ecol. Model. 113, 71–81.

Towell, G.G., Shavlik, J.W., 1994. Knowledge-based artificial
neural networks. Artif. Intell. 70, 119–165.

Whigham, P.A., Recknagel, F., 2000. Predicting chlorophyll-a
in freshwater lakes by hybridising process-based models
and genetic algorithms. Book of Abstracts of the Second
International Conference on Applications of Machine Learning
to Ecological Modeling, Adelaide University.

Wrobel, S., 1996. First order theory refinement. In: Raedt, L.D.
(Ed.), Advances in Inductive Logic Programming. IOS Press,
pp. 14–33.


	Using equation discovery to revise an Earth ecosystem model of the carbon net production
	Introduction
	A quantitative model of the Earth ecosystem
	Grammar-based equation discovery
	Grammar-based revision of equation models
	From an initial model to an initial grammar
	From an initial to an extended grammar
	Minimality of change principle

	Experiments in revising an Earth science model
	A grammar for the revision of the CASA-NPPc model
	Experimental results

	Related work
	Summary and conclusions
	References


