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Introduction

In contrast with traditional modeling methods,
which are used to identify parameter values of a
(given) model with known structure, equation dis-
covery systems identify the structure of the model as
well. The model generated with such systems can
give experts a better insight into the measured data
and can also be used for predicting future values of
the measured variables. This paper presents
LAGRAMGE, an equation discovery system that
allows the user to define the space of possible model
structures and can also make use of domain-specific
expert knowledge in the form of function defini-
tions. We use LAGRAMGE to automate the model-
ing of phytoplankton growth (blooms) in Lake
Glumse, Denmark. The structure of the model con-
structed with LAGRAMGE agrees with human
experts expectations. The model can be successfully
used for long-term prediction of phytoplankton con-
centration during algal blooms.

Tools that identify structure and parameters
of dynamic systems

In a previous paper of this series, KOMPARE (1998)
gave an example of a stationary (non-dynamic) sys-
tem identification using tools that rely on regression
(RETIS, FORS). Here we will discuss identification
of fully dynamic systems. The task of modeling
dynamic systems is to find a model that describes an
observed dynamic behavior, i.e. development of the
studied process(es) through time. A mathematical
model of a dynamic system is usually a set of differ-
ential equations that specifies the change of system
variables over time. Mainstream system identifica-
tion methods, surveyed in Ljung (1993), work
under the assumption that the model structure, i.e.
the form of the differential equations, is known. The
task is then to determine the values of the constant
parameters in the equations, so that the model best
fits measured data. The structure of the equations is
provided by the human expert and is based on the
theoretical knowledge about the domain at hand

(conceptual model).

Equation discovery systems, such as LAGRANGE
(DZeroskt & Toporovski 1993) and GOLD-
HORN (KRiZMAN et al. 1995), do not assume a pre-
scribed model structure, but rather explore a space of
(possibly non-linear) equations. They help human
experts to identify the structure of the model as well
as the values of the constant parameters. Equation
discovery systems can be used for automated model-
ing of ecological dynamic systems. KOMPARE (1995)
used LAGRANGE and GOLDHORN to produce a
model for predicting algal growth in the Lagoon of
Venice. Several problems arise when using these sys-
tems for modeling experimental data. LAGRANGE
discovered some equations predicting the optimal
temperature for algal growth, but no good equations
were discovered, from the viewpoint of what human
experts expected. The reason for this was the high
level of noise in the data. GOLDHORN incorpo-
rates methods for discovery from noisy data, so rea-
sonable equations were discovered, while many
equations of unacceptable structure were ranked as
better fitted.

These problems led to the idea of restricting the
space of possible equations considered in the process
of discovery by taking into account the expert’s
knowledge of the domain at hand. In the area of
machine learning, declarative language bias
(DeEHAspE & DERAEDT 1995) is used to specify the
hypothesis space. In the task of equation discovery,
this would be the space of all possible equations, or
more precisely, the space of all possible equation
structures. It has been observed that smaller hypoth-
esis spaces lead to better performance of the learned
concept (model) on a test set of unseen cases
(NEDELLEC et al. 1996).

In this paper, we present the LAGRAMGE equa-
tion discovery system. This name is a deliberate mis-
spelling of the name of the equation discovery sys-
tem LAGRANGE, the predecessor of LAGRAMGE.
The letter N is replaced with M, so that the second
part of the acronym reads gram as in grammar.
Namely, declarative bias based on grammars is used
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in LAGRAMGE (Topborovski & DZeroskt 1997)
that uses context-free grammars as a formalism for
specifying the form of discovered equations. The
grammar can use the usual mathematical operators
defined in C programming language, as well as addi-
tional functions defined by the grammar at hand.
The grammar is specified according to domain-spe-
. cific knowledge, and focuses the equation discovery
process on equations with structure that is acceptable
and comprehensible within the domain of use. The
context-free grammar does not necessarily specify
the precise structure of the model as in mainstream
system identification methods, but can only be used
to indicate the form of the expressions on the right
side of the equations.

The equation discovery

LAGRAMGE

system

Problem definition

The problem of equation discovery, as addressed by
LAGRAMGE, can be defined as follows.

Given:

* acontext-free grammar G = (N, T, B S) and

* inputdata D = (V, v, M), where V= {v,, v,,... v}
is a set of domain variables, v, € V is the depend-
ent variable and M is a set of one or more meas-
urements. Each measurement is a table of
measured values of the domain variables at suc-
cessive time points (Table 1).

Find:

an equation for expressing the dependent variable »,

in terms of variables in V. This equation is expected

to minimize the discrepancy between the measured

and calculated values of the dependent variable. The
equation can be either:

* differential, i.e. of the form dv/dt = v, = Eor
* ordinary, i.e. of the form v, = E,

where E is an expression that can be derived from the
context-free grammar G.

Table 1. Table of measured values of the domain
variables at successive time points

Time v

1 v2 K vn
t0 vl .0 V2,0 K n,0
t:l V1 )1 . VZ,] K Vn,l
tZ v1.2 VZ.Z K n2
M M M O M
tm Vl,m vl.m K vn.m
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The declarative bias formalism

The syntax of the expressions on the right hand side
of the equation is prescribed with a context-free
grammar (HopcroFT & ULLMAN 1979). A context-
free grammar (CGF) contains a finite set of variables
(also called non-terminals or syntactic categories)
each of which represents expressions or phrases in a
language (in equation discovery, non-terminals rep-
resent sets of expressions that can appear in the equa-
tions). The expressions represented by the non-
terminals are described in terms of non-terminals
and primitive symbols called terminals. The rules
relating the non-terminals among themselves and to
terminals are called productions.

We denote a context-free grammar as a tuple G =
(N, T, B S), where N and T are finite disjoint sets of
non-terminals and terminals, respectively. P is a
finite set of productions; each production is of the
form A — o, where A is a non-terminal and o is a
string of symbols from NV U T. We use the notation
A—>a, |a,l.. | o for aset of productions for the
non-terminal 4:4 — o, A5 o,.., A > .
Finally, S is a special non-terminal called starting
symbol. The terminal const € T is used to denote a
constant parameter in an equation that has to be fit-
ted to the input data. The terminals v, are used to
denote variables from the input domain D. Finally,
the non-terminal » € N denotes any variable from
the input domain. Productions connecting this non-
terminal symbol to the terminals v, are attached to v
automatically, i.e. Vv.e Viv > v, e P

Expressions can be derived by grammar G from
the non-terminal symbol § by applying productions
from P We start with the string w consisting of §
only. At each step, we replace the leftmost non-ter-
minal symbol A in string w with @, according to the
production A — o from P When w consists solely of
terminal symbols, the derivation process is over.

LAGRAMGE — the algorithm

Expressions generated by the context-free grammar
G contain one or more special terminal symbols
const. A non-linear fitting method is applied to
determine the values of these parameters. A context-
free grammar can, in principle, derive an infinite
number of expressions (equations). LAGRAMGE
thus uses a bound on the complexity (depth) of the
derivation used to produce the equation (ToDOR-
ovskl & Dzeroski 1997). The LAGRAMGE algo-
rithm exhaustively or heuristically searches for the
best equation (according to the selected heuristic
function) within the allowed complexity (depth)
limits. The whole procedure is described in detail in
Toporovski et al. (1998) and DZeroski et al.
(1999).
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Lake Glumse

Lake Glumse (JORGENSEN et al. 1986) is situated in a
sub-glacial valley in Denmark. It is shallow with an
average depth of about 2 m and its surface area is
266,000 m’. For several years, it received mechani-
cally and biologically treated waste water from a
community with 3,000 inhabitants and a surround-
ing area which was mainly agricultural with almost
no industry. The high nitrogen and phosphorus con-
centration in the treated waste water has caused
hypereutrophication. The lake contained no sub-
merged vegetation, probably due to the low trans-
parency of the water and oxygen deficit at the
bottom of the lake.

Concentrations of phytoplankton (phyr), zoop-
lankton (200), soluble nitrogen (nitro) and soluble
phosphorus (phosp) were considered relevant for
modeling the phytoplankton growth. State variables
were measured at 14 distinct time points, over a
period of 2 months. The amount of measured data
itself was far too small for (automatic, i.e. machine)
equation discovery, so additional processing was
applied to obtain a data set suitable for equation dis-
covery (KoMPARE 1995, DEM3AR 1996). First, dotted
graphs of the measurements were plotted and given
to three human experts to draw a curve that, in their
own opinion, described the dynamic behavior of the
observed system variable between the measured
points. A properly plotted expert curve can be
regarded as an additional source of reliable data.
Curves drawn by the human experts were then
smoothed with Besier splines. Finally, three new,
more exhaustive data sets were obtained by sampling
the splines derived from each of the three human
experts approximations at regular time intervals
with time step 4 = 0.1 day. The dynamic behavior of
the phytoplankton as represented by each of the
three data sets is shown in Fig. 1.

Secondly, a new data set was obtained by applying
a more sophisticated smoothing method to the graph
plotted by the first human expert (see Fig. 2). The
new data set also includes the measurements of the
temperature of the water in the lake (zemp). Due to
the fact that the second bloom might not be
described by the same model, the last portion of the
data was not taken into account.

Results and discussion

The grammar that describes the algal growth
was used in the experiments, taking into
account ecological background knowledge on
algal growth (MoNoOD 1942, JORGENSEN 1986).
Phosphorus and nitrogen are nutrients for phy-
toplankton and can thus appear in monod
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Fig. 1. Phytoplankton growth as seen by three
domain experts.
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Fig. 2. New data set for phytoplankton growth,
derived from the better smoothed curve of the first
expert.

terms. Other terms describe the decay of phy-
toplankton (~ const ® phyt) and the feeding of
zooplankton on phytoplankton (- const e phyt e
200). At the maximum derivation depth 4 used
in our experiments, 72 equations can be derived
from the grammar. The values of the constant
parameters in the equations specified by the
grammar are constrained to be positive.

In a first set of experiments when we worked
with three data sets we used the ‘leave one out’
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testing method: LAGRAMGE was given two
sets of data for equation discovery, and the best
equation discovered was then tested on the
remaining data set. The equation was tested on
the task of predicting phytoplankton growth.
The three equations obtained had the same
structure (Eq. 1):

ortP

ophyt
——— = const, - phyt-
ot 1P const , + ortP

(1)

—const 5 - phyt

The structure of the equations discovered
makes sense from an ecological point of view. It
correctly identified that phosphorus is a limit-
ing factor for phytoplankton growth in the
lake.

We used the obtained equations for predict-
ing the phytoplankton concentration in the
lake on the testing set and then calculated the
correlation coefficient between the measured
and predicted values. The constant parameter
values, as well as calculated correlation coeffi-
cients are shown in Table 2. It can be seen that
all equations give accurate short-term predic-
tions for phytoplankton growth. Note, how-
ever, the differences in the values of the equa-
tion coefficients, which indicate that experts
approximated the dynamics of phytoplankton
growth in quite different ways. Furthermore,
we tested the robustness of the predictor on
increasing the prediction period. The summary
of the results (correlation coefficients between
measured and predicted values) for prediction
periods of 1, 2 and 5 days are given in Table 3.

Finally, we compared the accuracy of the
obtained predictor with the accuracies of two
simple predictors: no-change and same-change.

Although simple, the two predictors have high

Table 2. Constant parameters’ values and correlation
coefficients for equations (Eq. 1) discovered by

LAGRAMGE.

Training const, const, const, r
data sets

1,2 0.617 0.101 0.442  0.9994
1,3 0.763 0.080 0.592  0.9989
2,3 0.383 0.444 0.155 0.9996
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Table 3. Correlation coefficients between the actual
phytoplankton concentration and the concentration
predicted by the discovered equations (Eq. 1) for dif-
ferent prediction time periods.

Training 1 day 2 days 5 days
data sets

1,2 0.9836 0.9413 0.7243
1,3 0.9849 0.9552 0.8137
2,3 0.9853 0.9566 0.7267

correlation coefficients for short-term predic-
tion and can thus be used as statistically signifi-
cant predictors in the absence of better predic-
tors, e.g. statistically derived black-box models,
or regression formulae. The no-change predic-
tor predicts that the value of the variable at the
next time point will be the same as the present
value

phyt(t + b) = phyt(t) (2)

The same-change predictor predicts the same
change of the value of the variable, as the
change in the previous time step

phit(t + b) — phyt(t) = phyt(t)— phyt(t—h)  (3)

The graphs in Fig. 3 show the dependence of
correlation coefficients between the measured
values and values predicted by the three differ-
ent predictors for increasing prediction period
for all data sets. The graphs show that the accu-
racy of the predictions decreases as the predic-
tion time increases, which could be expected.
The performance and robustness of all predic-
tors is comparable. The same-change predictor
has better performance than the one obtained
with LAGRAMGE, especially on the third data
set, but the LAGRAMGE predictor is more
robust, i.e. has smaller oscillations of perfor-
mance. The no-change predictor has the lowest
accuracy on all data sets.

In the last experiment, we used the new data
set, obtained from only the first bloom and also
with more elaborated smoothing of the first
expert’s curve (Fig. 2). The grammar used in
the experiments with the new data set was the
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Fig. 3. Dependence of correlation coefficients
between the measured values and values predicted
with the three different predictors on increasing
prediction period for all three original experimental
data sets.

same as the one used in previous experiments,
except that a new production was added to
allow the use of temperature in the monod
terms. The best equation discovered by
LAGRAMGE that satisfies the constraint for
the constant parameters’ values is:

dphyt

rtP
LV 0553 Temp - phyt - ——n
ot wp Py 0.0264 + ortP

(4)
—4.35- phyt —8.67 - phyt - zoo

Note that the structure of the equation dis-
covered is similar to the structure of equations
discovered from the first three data sets. It tells
us that phosphorus is the limiting factor for
phytoplankton growth in the lake, while phy-
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toplankton concentration and water tempera-
ture are controlling the rate of phytoplankton
growth. The equation also correctly identifies
grazing of zooplankton on phytoplankton.

The graph in Fig. 4 shows the correlation
coefficients between the measured values and
the values predicted with three different predic-
tors for the new data set as the prediction
period increased. We can observe high accuracy
and robustness of the predictor obtained with
LAGRAMGE. The predictor obtained with
LAGRAMGE is also suitable for long-term pre-
diction of phytoplankton growth in Lake
Glumse.

Conclusions

We presented the automatic equation discovery sys-
tem LAGRAMGE. In contrast with other system
identification methods, where the structure of the
model has to be provided (in advance) explicitly by
the human expert, LAGRAMGE can use a more
sophisticated form of representing the expert’s theo-
retical (background) knowledge about the domain at
hand. A context-free grammar can be used to specify
a whole range of possible equation structures that
make sense from the expert’s point of view. There-
fore, the discovered equations are in a comprehensi-
ble form and can give domain experts better or even
new insight into the measured data. This distin-
guishes LAGRAMGE from other methods for auto-
mated modeling such as artificial neural networks
and polynomial regression, which can be used for
obtaining black-box models, i.e. models with incom-
prehensible structure. Additionally, if plenty of mea-
surement data are available, less restrictive bias (more
general equation space) can be used. On the other

Learn and test on new data set

—Lagramge
- = no-change
—~—= same-change

25,72 38,58
time in days

Fig. 4. Dependence of correlation coefficients
between the measured values and values predicted
with the three different predictors on increasing pre-
diction period for the new experimental data set.
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hand, when less data are available, more background
knowledge should be used to restrict the space of
equations and compensate for the lack of data.

Using background knowledge was essential in the
task of modeling phytoplankton growth in Lake
Glumse on the basis of only 14 measurements
within the period of 2 months. Even with such
sparse measurement time points LAGRAMGE auto-
matically discovered an acceptable and comprehensi-
ble model (from the experts’ point of view) that can
be successfully used for predicting phytoplankton
growth in the lake. Experts’ knowledge was used in
this domain at two different levels. First, experts
sketched the dynamic behavior of the observed sys-
tem variables between the measurement points,
which is regarded as an additional source of reliable
data. Second, a context-free grammar was built using

biological knowledge of population dynamics.
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