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ABSTRACT

The paper presents a database of published Y
chromosome deletions and the results of analyzing
the database with data mining techniques. The
database describes 382 patients for which 177
different markers were tested: 364 of the 382
patients had deletions. Two data mining techniques,
clustering and decision tree induction were used.
Clustering was used to group patients according to
the overall presence/absence of deletions at the
tested markers. Decision trees and On-Line-
Analytical-Processing (OLAP) were used to inspect
the resulting clustering and look for correlations
between deletion patterns, populations and the
clinical picture of infertility. The results of the
analysis indicate that there are correlations
between deletion patterns and patient populations,
as well as clinical phenotype severity.

INTRODUCTION

Deletions of the Y chromosome are an
important cause of male infertility [1]. Testing for
deletions is important for etiological diagnosis  of
male infertility, as well as for the prevention of
iatrogenic transmission of mutations through
assisted reproduction techniques to the offspring.
Over 150 Y chromosome specific DNA markers
have been used in different studies on patients from
different regions  to detect deletions. However, no
mechanism of deletions, no correlation between
deletion patterns and population origins and no
correlation between deletion patterns and severity
of clinical phenotype has been found yet. We have
created and analyzed an extensive database of
published Y chromosome deletions with the aim to
investigate the possible correlation between
deletion patterns, population origins and the
severity of the clinical phenotype.

To analyse this database, we use data mining

methods [2], which allow us to discover hidden
patterns from facts recorded in a database. In
particular, we use two types of data mining
methods: clustering and decision tree induction.
Clustering methods group similar objects together.
Decision trees build concise classifiers that
discriminate among given groups of objects.

Hierarchical clustering was used to group
patients according to the overall presence/absence of
deletions at the tested markers. To summarize the
differences among the clusters, we build decision
trees that discriminate among them. To obtain a
more detailed picture of the characteristics of
patients in each cluster, we use On-Line-Analytical-
Processing (OLAP) [3] to inspect the resulting
clustering.

 OLAP allows multi-dimensional views of data,
where aggregations are permitted along hierarchical
dimensions. One dimension used in our case was the
geographic one, where countries (and the
corresponding patient populations) belong to
continents and this forms a three-level hierarchy
(world, continents, countries). Another hierarchical
dimension was the clustering generated during the
data mining phase. We can thus view properties we
are interested in (such as the number of patients or
percent of deletions) aggregated across the two
dimensions: e.g., we can view the number of patients
from each population that belong to a given cluster.

The clusters created in our analysis indicate
correlations between deletion patterns and population
origins, as well as the severity of the clinical
phenotype. These correlations need to be confirmed
by further clinical studies on new patients with
deletions of the Y chromosome.



70 GY6 DYS135 112 273 154 208 OX7
72 DBY DYS131/A 121 274 DYS7C DAZ 160
AMEL-Y 494cen DYF27/A 122 140 147 205-DAZ
PRY 494-130K 210-STSP 123 141 240 254-DAZ
75 UTY 100 SMCY DYS7E 245 255-DAZ
TSPY Y6HP35pr 101 DYS107 142 203 624-DAZ
78 88 102 124 143 242 276-DAZ
TTY1 165 103 125 RBM1 148 277-DAZ
TTY2 TB4Y 104 eIF-1AY RBM2 220a 279
79 89 105 126 GY48 262a 283-DAZ
183 90 CDY 127 144 221a SPGY
81 182 XKRY 128 145 233a 243
DYS140 151 106 129 DYS20 238 DYS12
82 91 107 130 DYS7 146 248
83 DYS139 135 55 DYS21 232a 236
203tel 94 108 131 153 239 267
86 BPY1 109 132 152 257 269
85 95 110 133 150 249 BPY2
84 DYS109 113 134 220 156 202
DFFRY 161 114 164 Fr15II 224 247
DF5' 97 116 136 232 231 157
DF4,1 98 117 207 262 204 158
DFJ/D 99-STSP Y6PHc54pr 138 221 201 159
DF3,1 DYS134 118 139 233 206 166
87 DYS132 119 272 155 149 167

Table 1. The names of the DNA markers used for testing deletions of the Y chromosome.

THE DATABASE
The data we used come from papers indexed by

the MEDLINE bibliographic database (a list of
which is available on request from the authors).
From  34 published papers, we extracted data on
382 patients. Note that 364 of these had deletions.
About 5% of infertile men carry deletions in the Y
chromosome. As most studies have analyzed under
200 patients, usually not more than 10 patients with
deletions were described in each article.

In the studies from which the patient data were
collected, a total of 177 DNA markers were used. A
typical study would test about 40 markers. The list
of all 177 DNA markers is given in Table 1 (see
also [4]). The data was stored in a MS Acess table
with 177 columns and 382 rows. The value – for a
given DNA marker indicated that the corresponding
deletion was present, + that the deletion was not
present, and blank that the marker was not tested for
the patient in question. The average number of
markers tested per patient was 43.8.

GROUPING PATIENTS WITH CLUSTERING
Cluster analysis [5] divides data points into

groups of points that are "close" to each other. We
used cluster analysis to group patients into clusters
according to their deletion patterns. The clustering
method we used was hierarchical agglomerative
clustering. It starts with every data point being a
cluster and repeatedly aggregates the most similar
(least dissimilar) groups together until there is just
one big group.  The number of groups can be chosen
subsequently.

A dissimilarity measure between patients was
defined for the purpose of clustering. Assuming the
outcomes of testing the 177 markers on patients P1

and P2 are (p1,1,  …, p1,177) and (p2,1,  …, p2,177) their
dissimilarity d1,2 is defined as the ratio between D1,2,
the number of markers where P1 and P2 have both
been tested and have yielded the same outcome and
N, the number of markers where both P1 and P2 have
been tested. d1,2 can take values between 0 and 1. If
N=0, i.e. P1 and P2 have not been tested together on
any marker, we set the dissimilarity to 1.



After calculating the dissimilarity between each pair
of patients, we performed hierarchical agglomerative
clustering as described above. After clustering was
complete, we decided on several numbers of clusters:
2, 5, 10, 20 and 30 clusters. These form a hierarchy:

clusters 5-1, 5-3 and 5-4 are subclusters of cluster 2-
1, while clusters 5-2 and 5-5 are subclusters of cluster
2-2. This hierarchy of clusters is used as a
hierarchical dimension for summarizing cluster
properties with OLAP.

Figure 1. An OLAP view of the number of patients, the number of marker tests and the percentage of tests
indicating deletions across patient clusters. The hierarchy of patient clusters is shown on the left.

Figure 2. An OLAP view of the number of patients across patient clusters and severity of clinical phenotype.
The hierarchy of patient clusters is  shown on the left. The first column gives information on patients of all types

of  severity, next four columns give information on patients of the respective severity of clinical phenotype.



Figure 1 displays an OLAP view, where the
measures of interest (number of patients, number of
marker tests, and percent of positive marker
outcomes/deletions) are shown for (a part of) the
hiererachy of patient clusters. Of the 364 patients,
343 belong to cluster 2-1 and 21 to 2-2. (Although
we clustered all 382 patients, only the 364 patients
with at least one deletion are shown in the Figures).
The top level of the patient cluster hierarchy (all
patients) is shown, as well as the next two levels (2
and 5 clusters). Cluster 5-2 is further broken down
into clusters 10-5 and 10-9 at the next hierarchical
level.

Overall, of the 16020 marker tests, some 32%
have indicated deletions. In the cluster 2-1, this
percentage is slightly lower (29%), while in cluster
2-2, it is much higher (85%). This percentage is still
higher (92%) in the subcluster 5-2, which comprises
20 of the 21 patients in  cluster 2-2.

Referring to Figure 2, where patients are broken
down according to the severity of the clinical
phenotype, we can see that all patients in cluster 5-2,
for which the severity of the clinical phenotype is
known,  have azoospermia (AZO). Referring to
Figure 3, where patients are broken down according
to populations/geography, we can see that cluster 5-
2 has 11 European, 6 American, 2 Asian, and 1
other patient. The percent of European patients here
is 55%, as compared to the overall 45%.

Another interesting cluster is 5-3. This is a large
cluster (147 of the 364 patients) with surprisingly
few deletions (less than 10%). It has an unusually
high relative number of patients with OAT (oligo-
asteno-terato-azoospermia): while there are overall
three times more patients with AZO as compared
to OAT, in this cluster the numbers are
comparable (41 and 47). This cluster has a higher
percentage of Americans and lower percentage of
Asians as compared to the entire dataset.

DESCRIBING THE PATIENT CLUSTERS
WITH DECISION TREE INDUCTION

Classification trees, often called decision trees
[5] predict the value of a discrete dependent
variable with a finite set of values (called class)

from the values of a set of independent variables
(called attributes), which may be either continuous
or discrete. Data represented in the form of a table,
can be used to learn or automatically construct a
decision tree. In the table, each row (example) has
the form: (x1, x2, ..., xN, y), where xi are values of
the attributes (e.g., the outcomes of applying
different DNA markers) and y is the value of the
class (e.g., the severity of the clinical phenotype:
azoospermia /azo/ or oligo-asteno-terato-
azoospermia /oat/).

The induced (learned) decision  tree has a test
in each inner node that tests the value of a certain
attribute, and in each leaf a value for the class.
Given a new example for which the value of the
class should be predicted, the tree is interpreted
from the root. In each inner node the prescribed test
is performed and according to the result of the test
the corresponding left or right subtree is selected.
When the selected node is a leaf then the value of
the class for the the new example is  predicted
according to the class in the leaf.

In our case, we took the cluster to which a
patient was assigned as the class. We considered
two different problems: one for the second level of
the clustering hierarcy (two clusters) and one for
the third level (5 clusters).  The attributes were the
same in both cases: these were the 177 markers.

Below we give the tree for discriminating
between the two clusters 2-1 and 2-2, rewritten in
the form of if-then-else rules:

IF D84 = no THEN Cluster = 2-1
ELSE IF D84 = yes THEN
    IF D160 = no THEN Cluster = 2-1
    ELSE IF D160 = yes THEN
        IF D153 = yes THEN Cluster = 2-2
        ELSE IF D153 = no THEN Cl.=2-1

The tree states that patients of cluster 2-2 are
characterized by the presence of deletions at each
of the following three markers: DYS84, DYS160
and DYS153. These three markers are placed
respectively at the proximal part (DYS84), the
middle region (DYS153) and the distal part
(DYS160) of the Y q-arm. The presence of
deletions at all three markers simultaneously
indicates the presence  of  large deletions, leading
to severe phenotype of male infertility.



CONCLUSIONS
Using data from papers indexed by the

MEDLINE bibliographic database, we have
created a database containing information on
patients with Y chromosome deletions, including
results of testing markers on patients and the
severity of the clinical phenotype. We have
analysed this data with data mining techniques, in
particular clustering and decision-tree induction,
and inspected the data mining results using On-
Line Analytical Processing (OLAP).

The obtained clusters indicate correlations
between deletion patterns and population origins.
This is most evident in the case of  patients with
relatively few deletions, where the Asian
population was underrepresented as compared to
Americans and Europeans. This could mean that
the Y chromosome population background
influences the mechanism(s) of deletions. This has
to be confirmed by further studies, based on
analysis of Y chromosome genetic polymorphisms
in the respective populations.

The clusters also indicate strong correlation
between deletion patterns and the severity of the
clinical phenotype. Most notably, patients where a

high proportion of the tested markers has shown
deletions tend to have a more severe clinical
phenotype. The clinical relevance of these findings
need to be tested on new patients with deletions.
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Figure 3. An OLAP view of the number of patients across patient clusters and population origins.
The hierarchy of patient clusters is  shown on the left. The first column gives information on patients of all

nations, next four columns give information on patients of the respective population groups.


