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Abstract

European research in Inductive Logic Programming (ILP) has been mainly conducted
within two ESPRIT research project, ILP (1992-95) and ILP2 (1996-98), whereas the Eu-
ropean Inductive Logic Programming Scientific Network ILPNET (1993-96) provided the
infrastructure support for ILP research. The main results of ILPNET are outlined in this
paper. Particular emphasis is given on the description of ILPNET repositories of ILP sys-
tems, datasets and bibliography, which have been made publicly available on WWW at
http://www-ai.ijs.si/ilpnet.html.

1 Introduction

European research in Inductive Logic programming (ILP) has been mainly conducted within two
ESPRIT research project, ILP (1992-95) and ILP2 (1996-98). The main topics of ILP research
are the investigation of the theoretical framework for induction, the development of practical
algorithms for inductive learning in first-order logic representation formalisms, and the practical
applications of ILP algorithms in relational learning problems.

Standard ILP systems induce a general hypothesis H, represented as a set of clauses in a selected
first-order hypothesis language, from training examples E (E = P U N, where P are positive and
N are negative examples) and background knowledge theory T', such that H explains the examples
FE with respect to the theory T'. Training examples are ground facts, and background knowledge is
a set of clauses, giving intensional or extensional definitions of background knowledge predicates.
In the classical ILP concept-learning task, H is said to explain E with regard to T if and only
if T AH | P (completeness) and T'A H A N [~ O (consistency). Many systems apply a weaker
notions of explanation; this is, for instance, due to the need of handling imperfect (noisy) data or
due to a different formulation of the learning task. In the latter case, where the task is to find the
properties that can be derived from T and FE, for which the explanation based on non-monotonic
reasoning is more appropriate.



In the ESPRIT IIT project no. 6020 Inductive Logic Programming (1992-95), research was
grouped around the following research topics: theory of inductive learning, theory revision and
multiple predicate learning, predicate invention, handling of imperfect data, declarative bias and
applications of ILP. In the ESPRIT IV project no. 20237 Inductive Logic Programming 2 (1996-
98), there is an important shift towards applications of ILP, but the following theorectically and
practically important scientific problems remain to be further investigated: background knowl-
edge (relevance, theory revision, predicate invention), complex hypotheses (multi-clause learning,
deep clauses, recursion, structured hypotheses), built-in semantics (number handling, probabili-
ties, constraints, built-in predicates), and sampling issues (large datasets, small datasets, statistical
reliability).

The consortium of the ILP2 project consists of eight institutions: Katholieke Universiteit Leu-
ven (coordinator), Oxford University, German National Research Center for Computer Science, J.
Stefan Institute and Faculty of Computer Science and Informatics Ljubljana, University of Stock-
holm, Université Paris Sud, Tilburg University, and Universita di Torino.

Whereas the ILP projects support research, the European Inductive Logic Programming Sci-
entific Network ILPNET (1993-96) provided the infrastructure support for ILP research. The
consortium of ILPNET is a superset of that of the ESPRIT projects. It also consists of: Faculty of
Technical Sciences Maribor, Bulgarian Academy of Sciences, Czech Technical University Prague,
Romanian Academy of Sciences, Austrian Research Institute for Artificial Intelligence, University
of Porto, University of Dortmund, Technical University Graz, Hungarian Academy of Sciences,
Daimler Benz, and Rudjer Boskovi¢ Institute Zagreb. It can be noted that many ILPNET part-
ners are from Central and Eastern European countries. Being a scientific network (network no.
CP93-44) funded under the umbrella of PECO/Copernicus, the aim of ILPNET was namely to
stimulate the development, coordination, communication and exchange of results and personnel
in ILP research and to disseminate the research results to a wider European research community.
A particular aim was to build new communication and dissemination channels and to make them
available to Central and Eastern European researchers interested in ILP.

The main results of the ILPNET scientific network, coordinated by the J. Stefan Institute,
Ljubljana, are outlined in this paper. Information about ILPNET and its activities can be obtained
on World-Wide Web (WWW) from the J. Stefan Institute ILPNET homepage at
http://www-ai.ijs.si/ilpnet.html.

The following information is accessible on WWW: a brochure describing each ILPNET partner
(much of this information was already published in the AI Communications [318]), issues of the
ILP Newsletter, ILP-related PhD thesis abstracts, ILP and ILP-related books. In this paper, a
particular emphasis is given on the description of ILPNET repositories of ILP systems, datasets
and bibliography, which have been made publicly available on WWW.

In Section 2, the paper provides an overview of ILP systems gathered at the ILPNET system
repository. As this paper is basically a report on ILPNET, its emphasis is on systems developed
by ILPNET members. Descriptions of systems developed outside ILPNET are marked with an
asterisk (*). For each system, a short description is given which summarizes its basic principles,
the functionality and options it offers, and the input it expects. To facilitate the selection of a
suitable system, the hardware and software prerequisites for running the system are described as
well.

Section 3 describes a variety of ILP-related datasets that have been made available as a result
of ILPNET activities. Most come from several broad application areas of molecular biology, finite
element mesh design, natural language processing, the area of modelling, diagnosis and control,
and chess. Sample datasets that illustrate the input/output performance of several ILP systems
have been also made available, as well as several datasets that do not fall in the above application
areas and are gathered under the heading ‘miscellaneous’. Again, datasets not originating from
the ILPNET consortium are marked with an asterisk (*).

Section 4 gives an exhaustive list of bibliographic items. There is no distinction between
ILPNET and non-ILPNET contributions.



Despite its inevitable incompleteness, we believe that this overview contributes to the better
understanding and accessibility of the results of ILP research to the interested readers.
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2 ILP systems

A common classification of ILP systems distinguishes between empirical ILP systems and inter-
active ILP systems [322, 105]. Empirical ILP systems are characterised as non-interactive batch
learners inducing definitions for single predicates from scratch. Interactive systems, also called
incremental systems, interactively learn multiple predicates, possibly starting with a preliminary
incomplete or inconsistent theory. This classification is not to be taken too rigidly but rather as in-
dicating two poles of the spectrum of exisiting ILP systems. To better fit the situation encountered
at the ILP systems repository, we further divide the class of empirical systems according to the
number of examples the systems expect to process. In the refined classification, the term empirical
ILP systems then refers to single-predicate batch learning systems which are able to analyse large
example sets requiring little or no user guidance.

Interactive ILP systems incrementally build complex domain theories consisting of multiple
predicates where the user controls and initiates the subsequent steps of the model construction
and refinement process. These systems usually offer a graphical user interface.

The third group of systems learns from small example sets in batch mode. One of the systems
we assign to this group, namely FILP [41, 43] queries the user for missing examples, but as
this interaction takes place in advance to induction, and as the induction proceeds autonomously
once the example set is completed, the learning algorithm in essence performs batch-learning.
The system MARKUS [244] is a non-interactive theory revisor learning single predicates, and
consequently fits neither into the class of empirical ILP systems nor into the class of interactive
ILP systems. Thus it seems natural to distinguish a third class of systems. As these systems require
only small example sets and little user guidance, this class of systems may qualify as programming
assistants.

Recently, the interest in ILP research has extended to include alternative task settings besides
the classical ILP concept-learning task. The ILP systems repository includes two systems which
are commonly assigned to the non-classical approach. They are described at the end of this section.

The emphasis of this report is on systems developed by ILPNET members. Descriptions of
systems developed outside ILPNET are marked with an asterisk (*). These systems are described
in less detail, expect for the system FOIL [452] which is one of the best-known and successful
empirical ILP systems and has inspired much of further ILP research.

2.1 Empirical ILP systems
2.1.1 FOIL*

FOIL [452, 457] is a system for learning intensional concept definitions from relational tuples.
The induced concept definitions are represented as function-free Horn clauses, optionally containing
negated body literals. The background knowledge predicates are represented extensionally as sets of
ground tuples. FOIL employs a heuristic search strategy which prunes vast parts of the hypothesis
space.



System: FOIL
Version: 6.4
Further specification: | empirical ILP system

Pointers: ftp://ftp.cs.su.oz.au/pub

Code: C source code, to be compiled using the enclosed Makefile
References: [452], [457]

Other comments: The release also includes a conversion program for

transforming C4.5 input files into the FOIL format.

Table 1: FOIL: short description of the system.

As its general search strategy, FOIL adopts a covering approach. Induction of a single clause
starts with a clause with an empty body which is specialised by repeatedly adding a body literal
to the clause built so far. As candidate body literals, FOIL considers the literals which are
constructed by variabilising the known predicates, that is, by distributing variables to the argument
places of background knowledge predicates. Additionally, FOIL takes into account literals stating
(un)equality of variables. Furthermore, literals may contain constants which the user has declared
as theory (i.e. relevant) constants.

All literals conform to the type restrictions of the predicates. For further control of the language
bias, FOIL provides parameters limiting the total number and maximum depth of variables in a
single clause. In addition, FOIL incorporates mechanisms for excluding literals which might lead
to endless loops in recursive hypothesis clauses. FOIL offers limited number handling capabilities
and generates literals comparing numeric variables to each other or to thresholds it has derived.

Among the candidate literals, FOIL selects one literal to be added to the body of the hypothesis
clause. The choice is determined by the information gain heuristic. The gain heuristic is an
information-based measure estimating the utility of a literal in dividing positive from negative
examples. FOIL stops adding literals to the hypothesis clause if the clause reaches the predefined
minimum accuracy or if the encoding length of the clause exceeds the number of bits needed for
explicitly encoding the positive examples it covers. This second stopping criterion prevents the
induction of overly long and specific clauses in noisy domains. Induction of further hypothesis
clauses stops if all positive examples are covered or if the set of induced hypothesis clauses violates
the encoding length restriction. In a postprocessing stage, FOIL removes unneccessary literals
from induced clauses as well as redundant clauses from the concept definition.

FOIL’s greedy search strategy makes it very efficient, but also prone to exclude the intended
concept definitions from the search space. Some refinements of the hill-climbing search alleviate
its short-sightedness, such as including a certain class of literals with zero information gain into
the hypothesis clause and a simple backtracking mechanism.

FOIL is a batch learning system which reads in all learning input from a single input file.
For learning, positive as well as negative examples are required. A user may provide negative
examples explicitely or, alternatively, instruct FOIL to construct negative examples automatically
according to the Closed World Assumption (CWA). In the latter case, the set of positive examples
must be complete up to a certain example complexity. For predicates with high arity, the CWA
may generate a huge number of negative examples. FOIL offers a command line option allowing
the user to specify the percentage of randomly-selected negative examples to be used for induction.

Examples and background knowledge for FOIL have to be formatted as tuples, that is, each
ground instance of a predicate is represented as a sequence of argument values. For each predicate,
the user provides a header defining its name and argument types. Optionally, the user may indicate
the input/output mode of the predicates, thus further limiting the number of literals constructed
by FOIL.

For convenient testing of the induced hypothesis, the user may provide test cases (i.e. classified
examples) for the target predicates together with the learning input. FOIL then checks the



hypothesis on these cases and reports the results.

2.1.2 wMFOIL
System: mFOIL
Version:
Further specification: | empirical ILP system
Pointers: http://www.gmd.de/ml-archive/ILP/public/software/mfoil
Code: Quintus Prolog source code
References: [164], [322]
Other comments: The implementation of mFOIL runs considerably slower than FOIL.

Table 2: MFOIL: short description of the system.

The system MFOIL [164, 322] is a descendant of FOIL which aims at improving its noise
handling capacities which are of crucial importance when processing imperfect real-world datasets.

MFOIL integrates several noise-handling techniques from attribute-value learning approaches
into FOIL. It offers two alternative accuracy-based search heuristics replacing FOIL’s entropy-
based information gain criterion, namely the Laplace-estimate and the more sophisticated m-
estimate. The m-estimate takes into account the prior probabilities of examples, leading to a
more reliable criterion for small example sets. The user-settable parameter m allows to control the
influence of the prior probabilities. In MFOIL, FOIL’s encoding-length based stopping criteria
are replaced by criteria relying on statistical significance testing.

Further differences between FOIL and MFOIL concern the search strategy and the background
knowledge. As FOIL, MFOIL adopts a covering strategy, but, unlike FOIL, it conducts beam
search in order to overcome at least partially some of the disadvantages of FOIL’s greedy hill-
climbing search. On the other hand, some of FOIL’s more advanced features, such as number
handling, are not realised in MFOIL. Whereas FOIL is restricted to ground background knowl-
edge, MFOIL is able to process intensionally defined background predicates as well. Furthermore,
compared to FOIL, MFOIL allows the user to declare additional informations on the background
predicates which reduce the number of possible body literals constructed during induction and
thus help to gain efficiency.

2.1.3 GOLEM

System: GOLEM

Version:

Further specification: | empirical ILP system

Pointers: http://www.comlab/ox.ac.uk/oucl/groups/machlearn/golem.html
http://www.gmd.de/ml-archive/ILP/public/software/golem

Code: C executable, running on Sun SparcStations

References: [405]

Other comments: A tar-file is available, containing the source files, a README file
explaining the usage of GOLEM and some example datasets.
GOLEM source can be obtained from both WWW sites.

Table 3: GOLEM: short description of the system.

As FOIL, GOLEM [405] is a ‘classic’ among empirical ILP systems. It has been applied
successfully on real-world problems such as drug design [295] and finite element mesh design [160].



GOLEM copes efficiently with large datasets. It achieves this efficiency because it avoids
searching a large hypothesis space for consistent hypotheses like, for instance, FOIL, but rather
constructs a unique clause covering a set of positive examples relative to the available background
knowledge. The principle is based on the relative least general generalisations (rlggs) introduced
by Plotkin [440, 441]. GOLEM embeds the construction of rlggs in a covering approach. For the
induction of a single clause, it randomly selects several pairs of positive examples and computes
their rlggs. Among these rlggs, GOLEM chooses the one which covers the largest number of
positive examples and is consistent with the negative examples. This clause is further generalised.
GOLEM randomly selects a set of positive examples and constructs the rlggs of each of these
examples and the clause obtained in the first construction step. Again, the rlgg with the greatest
coverage is selected and generalised by the same process. The generalisation process is repeated as
long as the coverage of the best clause stops increasing. GOLEM conducts a postprocessing step,
which reduces induced clauses by removing irrelevant literals.

In the general case, the rlgg may contain infinitely many literals. Therefore, GOLEM imposes
some restrictions on the background knowledge and hypothesis language which ensure that the
length of rlggs grows at worst polynomially with the number of positive examples. The background
knowledge of GOLEM is required to consist of ground facts. For the hypothesis language, the
determinacy restriction applies, that is, for given values of the head variables of a clause, the values
of the arguments of the body literals are determined uniquely. The complexity of GOLEM’s
hypothesis language is further controlled by two parameters, i and j, which limit the number and
depth of body variables in a hypothesis clause.

GOLEM learns Horn clauses with functors. It may be run as a batch learner or in interactive
mode where the induction can be controlled manually. GOLEM is able to learn from positive
examples only. Negative examples are used for clause reduction in the postprocessing step, as well
as input/output mode declarations for the predicates the user may optionally supply. For dealing
with noisy data, GOLEM provides a system parameter enabling the user to define a maximum
number of negative examples a hypothesis clause is allowed to cover.

2.1.4 LINUS

System: LINUS
Version:
Further specification: | empirical ILP system
Pointers: http://wuw.gmd.de/ml-archive/ILP/public/software/linus
Code: Quintus Prolog source code
References: [312], [325], [325], [322]
Other comments: The distribution includes an executable of CN2
running with SunOS 4.1.3.

Table 4: LINUS: short description of the system.

LINUS [325, 322] is an ILP learner which incorporates existing attribute-value learning systems.
The idea is to transform a restricted class of ILP problems into propositional form and solve
the transformed learning problem with an attribute-value learning algorithm. The propositional
learning result is then re-transformed into the first-order language. On the one hand, this approach
enhances the propositional learners with the use of background knowledge and the more expressive
hypothesis language. On the other hand, it enables the application of successful propositional
learners in a first-order framework. As various propositional learners can be integrated and accessed
via LINUS, LINUS also qualifies as an ILP toolkit offering several learning algorithms with
their specific strengths. The present distribution of LINUS provides interfaces to the attribute-
value learners ASSISTANT, NEWGEM, and CN2. Other propositional learners may be added.



LINUS can be run in two modes. Running in CLASS mode, it corresponds to an enhanced attribute-
value learner. In RELATION mode, LINUS behaves as an ILP system. Here, we focus on the
RELATION mode only.

The basic principle of the transformation from first-order into propositional form is that all
body literals which may possibly appear in a hypothesis clause (in the first-order formalism) are
determined, thereby taking into account variable types. Each of these body literals corresponds to
a boolean attribute in the propositional formalism. For each given example, its argument values
are substituted for the variables of the body literal. Since all variables in the body literals are
required to occur also as head variables in a hypothesis clause, the substitution yields a ground
fact. If it is a true fact, the corresponding propositional attribute value of the example is true,
and false otherwise. The learning results generated by the propositional learning algorithms are
retransformed in the obvious way. The induced hypotheses are compressed in a postprocessing
step.

In order to enable the transformation into propositional logic and vice versa, some restrictions
on the hypothesis language and background knowledge are necessary. As in most systems, training
examples are ground facts. These may contain structured, but nonrecursive terms. Negative
examples can be stated explicitly or generated by LINUS according to the CWA. LINUS offers
several options for controlling the generation of negative examples.

The hypothesis language of LINUS is restricted to constrained deductive hierarchical database
clauses, that is, to typed program clauses with nonrecursive predicate definitions and nonrecursive
types where the body variables are a subset of the head variables. Besides utility functions and
predicates, hypothesis clauses consist of literals unifying two variables (X = Y) and of literals
assigning a constant to a variable (X = a). Certain types of literals may appear in negated form
in the body of a hypothesis clause.

Background knowledge has the form of deductive database clauses, that is, possibly recursive
program clauses with typed variables. The variable type definitions which are required to be non-
recursive have to be provided by the user. The background knowledge consists of two types of
predicate definitions, namely utility functions and utility predicates. Utility functions are predi-
cates which compute a unique output value for given input values. The user has to declare their
input/output mode. When occuring in an induced clause, the output arguments are bound to
constants. Utility predicates are boolean functions with input arguments only. For a given input,
these predicates compute true or false.

An empirical comparison of FOIL, MFOIL and GOLEM can be found in [164]. [175] provides
an empirical comparison of LINUS and FOIL.

2.1.5 PROGOL

System: PROGOL

Version: 4.1

Further specification: | empirical ILP system

Pointers: ftp://ftp.comlab.ox.ac.uk/pub/Packages/ILP/PROGOL4.1/

Code: C source code

References: [395], [396], [398]

Other comments: Distributed together with a manual and examples. Freely available for
academic research. Also available under license for commercial research.
Version 4.2 [398] for learning from positive-only data is also available.

Table 5: PROGOL: short description of the system.

The system PROGOL [395, 396] provides the user with a standard Prolog interpreter aug-
mented with inductive capacities. PROGOL can be run interactively or in batch mode. In



interactive mode, PROGOL behaves similar to a standard Prolog interpreter allowing the user to
pose queries or assert new clauses. Additionally, the user can request the system to generalise the
examples. In batch mode, PROGOL is called from the operating shell with the name of an input
file containing examples and background knowledge as an argument.

PROGOL employs a covering approach like, e.g., FOIL. That is, it selects an example to
be generalised and finds a consistent clause covering the example. All clauses made redundant
by the found clause including all examples covered by the clause are removed from the theory.
The example selection and generalisation cycle is repeated until all examples are covered. When
constructing hypothesis clauses consistent with the examples, PROGOL conducts a general-to-
specific search in the theta-subsumption lattice of a single clause hypothesis. In contrast to other
general-to-specific searching systems, PROGOL computes the most specific clause covering the
seed example and belonging to the hypothesis language. This most specific clause bounds the
theta-subsumption lattice from below. On top, the lattice is bounded by the empty clause. The
search strategy is an A*-like algorithm guided by an approximate compression measure. Each
invocation of the search returns a clause which is guaranteed to maximally compress the data,
however, the set of all found hypotheses is not necessarily the most compressive set of clauses for
the given example set. PROGOL can learn ranges and functions with numeric data (integer and
floating point) by making use of the built-in predicates “is”, <, =<, etc.

The hypothesis language of PROGOL is restricted by the means of mode declarations provided
by the user. The mode declarations specify the atoms to be used as head literals or body literals
in hypothesis clauses. For each atom, the mode declaration indicates the argument types, and
whether an argument is to be instantiated with an input variable, an output variable, or a constant.
Furthermore, the mode declaration bounds the number of alternative solutions for instantiating
the atom. The types are defined in the background knowledge by unary predicates, or by Prolog
built-in functions.

PROGOL’s syntax for examples, background knowledge and hypotheses is Dec-10 Prolog with
the usual augmentable set of prefix, postfix and infix operators. However, unlike in the Edinburgh
DEC-10 Prolog syntax, a distinction is drawn in Progol between assertions, which are terminated
in a “.” and queries, which are terminated in a “?”. Arbitrary Prolog programs are allowed as
background knowledge. Besides the background theory provided by the user, standard primitive
predicates are built into PROGOL and are available as background knowledge. Positive examples
are represented as arbitrary definite clauses. Negative examples and integrity constraints are rep-
resented as headless Horn clauses. Using negation by failure (CWA), PROGOL is able to learn
arbitrary integrity constraints. For instance, a clause man(X) V woman(X) + normal(X), rep-
resented as the Prolog integrity constraint :- normal(X), not(man(X)), not(woman(X)). can

be learned using the four mode declarations :- modeh(1,false)?, :- modeb(1,normal (+p))7?,
:- modeb(1,not(man(+p)))?, and :- modeb(l,not(woman(+p)))?, from examples like
:- normal(lesliel).

PROGOL provides a range of parameters for controlling the generalisation process. These
parameters specify the maximum cardinality of hypothesis clauses, a depth bound for the theorem
prover, the maximum layers of new variables, and an upper bound on the nodes to be explored
when searching for a consistent clause. PROGOL allows to relax consistency by setting an upper
bound on the number of negatives that can be covered by an acceptable clause.

PROGOLA4.2 [398] is an upward compatible with version 4.1 but learns from positive-only
data. The system is available from the author upon request. Papers [398] and [397], describing
PROGOLA4.2, can be obtained as Postscript by anonymous ftp from ftp.comlab.ox.ac.ukin files
pub/Packages/ILP/Papers/poslearnl.ps and pub/Packages/ILP/Papers/slp.ps, respectively.

2.1.6 SPECTRE

SPECTRE (SPECialization by TRansformation and Elimination) [64] is an empirical ILP
system that can handle large example sets very efficiently.



System: SPECTRE

Version: 1.0

Further specification: | empirical ILP system

Pointers: http://www.dsv.su.se/ henke/SPECTRE/SPECTRE.html

Code: SICStus Prolog 3.1

References: [64]

Other comments: Provided both as a stand-alone application for SUN OS 4
and as a SICStus Prolog object file (requiring SICStus 3.1).

Table 6: SPECTRE: short description of the system.

Given sets of positive and negative examples and an overly general initial theory, that is, a
theory which covers all positive and some of the negative examples, SPECTRE specialises an
overly general initial theory in order to find a hypothesis which entails all positive examples but
no negative examples.

SPECTRE employs a divide-and-conquer technique to specialize the overly general hypothesis
until no negative examples are covered. Specialisation of the theory is performed by combining
clause removal with the transformation rule unfolding. When SPECTRE finds a clause that covers
a negative example and no positive examples, it removes the clause. When it finds a clause that
covers both negative and positive examples, it unfolds the clause. Unfolding a clause requires the
selection of a literal of the clause. The clause is resolved with all clauses in the theory with heads
unifying with the selected literal. Then, the clause is replaced by the resulting resolvents. The
choice of which literal to unfold upon is made such that the entropy of the resolvents is minimized.
The resulting hypothesis consists of those clauses that cover positive examples only.

SPECTRE uses the overly general theory as a declarative bias that not only restricts what
predicate symbols may occur in bodies of learned clauses, but also how these can be invoked.
Specialised clauses defining the target predicate can only contain literals which occur in the initial
target predicate definition or in clauses resolving with the initial or intermediate target predicate
definitions. Therefore, the initial theory is crucial for the success of the induction.

In order to run SPECTRE, two input files are needed, namely a theory file containing the
overly general theory in the form of a Prolog program in the Edinburgh syntax, and an example
file with unit clauses in the Edinburgh syntax defining the positive and negative examples as
arguments of the predicates pos/1 and neg/1, respectively. SPECTRE assumes that the target
predicate is non-recursive, i.e., the target predicate is not allowed to appear in bodies of clauses.
Background predicates, however, may be recursive. SPECTRE provides a graphical interface. No
system parameters need to be set.

2.1.7 MERLIN

System: MERLIN

Version: 1.0

Further specification: | empirical ILP system

Pointers: http://www.dsv.su.se/ henke/MERLIN/MERLIN.html

Code: SICStus Prolog 3.1

References: [63]

Other comments: Provided both as a stand-alone application for SUN OS 4
and as a SICStus Prolog object file (requiring SICStus 3.1).

Table 7: MERLIN: short description of the system.

MERLIN (Model Extraction by Regular Language INference) [63] is a non-interactive, multiple



predicate learning system that has the ability to invent new predicates. Like SPECTRE, it uses
an overly general hypothesis in the form of a logic program together with sets of positive and
negative examples in order to find an inductive hypothesis which entails all positive examples but
no negative examples.

The basic idea of the approach is to learn finite-state automata that represent allowed sequences
of resolution steps. MERLIN first finds SLD-refutations for all examples using the overly general
hypothesis, and then tries to find the minimal finite-state automaton that can generate all sequences
of input clauses in the SLD-refutations of the positive examples and no sequences of input clauses
in the SLD-refutations of the negative examples. After having learned the automaton, MERLIN
produces a new theory that allows only those sequences of resolution steps which are allowed by
both the initial theory and the learned automaton. This is done by calculating the intersection of
the automaton and a grammar that corresponds to the overly general hypothesis. The intersection
is used to derive the final hypothesis in the form of a logic program. During this process MERLIN
may introduce new predicate symbols, i.e., it carries out a form of predicate invention.

As the induced hypothesis allows only such resolution sequences which are possible in the
initial theory, the initial theory defines MERLIN’s language bias. For instance, as the resolution
sequences produced by the new theory involve only those clauses which are also part of resolution
sequences allowed by the initial theory (besides clauses defining the newly introduced predicates),
it is important that all relevant clauses occur in the resolution sequences produced by the initial
theory.

MERLIN expects as input a theory file containing the initial theory in form of a Prolog
program in Edinburgh syntax, and an example file with unit clauses that define the positive and
negative examples as arguments of the predicates pos/1 and neg/1, respectively. The arguments
of the predicates pos/1 and neg/1 are instances of the same atom. MERLIN assumes that each
positive example has at least one SLD-refutation such that there is no negative example with an
SLD-refutation that has the same sequence of input clauses.

MERLIN provides a graphical interface. No parameters are to be set.

2.1.8 FOIDL*

System: FOIDL”

Version: 1.0 Alpha

Further specification: | empirical ILP system

Pointers: ftp://ftp.cs.utexas.edu/pub/mooney/foidl/

Code: Quintus Prolog (version 3.1.3) source code
and two LISP implementations

References: [362], [363]

Other comments: The Prolog version only creates non-recursive programs and always creates
decision lists, so it is useful only for functional, non-recursive concepts.
Two Lisp implementations are available, one version incorporating
a Prolog interpreter, the other incorporating a Prolog compiler.

Table 8: FOIDL: short description of the system.

FOIDL [362, 363] is a descendant of FOIL differing from its predecessor in the following
three ways. First, FOIDL is able to process intensionally defined background knowledge. Second,
it substitutes the assumption of output completeness for explicit negative examples. The output
completeness assumption requires that a mode declaration for the target predicate is given. It states
that for every unique input pattern appearing in the training set, all correct output patterns occur
in the examples in training the set. Together with the mode declaration, the positive examples
then implicitly determine the negative examples. The third difference between FOIDL and FOIL
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is that FOIDL supports the induction of decision lists. A decision list is an ordered set of clauses
each ending with a cut. When answering a query, the decision list returns the answer of the first
clause in the ordered set which succeeds in answering the query. FOIDL generates the clauses in
the decision list in reverse order, that is, clauses learned first appear at the end of the decision list.
As the covering algorithm tends to learn more general clauses covering many positive examples
first the more general clauses are placed as default cases at the end of the decision list.

2.1.9 FOCL*
System: FOCL*
Version:
Further specification: | empirical ILP system
Pointers: http://www.ics.uci.edu/AI/ML/FOCL.html
Code: Common Lisp source code
References: [436]
Other comments: Available also as a Macintosh application, including a graphical interface

to the machine learning program that shows the search space explored by
FOCL, so it is a useful pedagogical tool for explaining inductive and
explanation-based learning. It also provides facilities for creating

and graphically editing knowledge-bases, tracing rules, and generating
explanations, so the Mac version may be used as an expert system shell.

Table 9: FOCL: short description of the system.

The system FOCL [436] learns Horn clause programs from examples and, optionally, back-
ground knowledge. It integrates an explanation-based learning component with the inductive
learning approach of FOIL. FOCL is able to use intensionally defined background knowledge
and accepts as input a partial, possibly incorrect rule as an approximation of the target predicate.
User-defined constraints which realise a declarative language bias allow to restrict the search space.

2.1.10 HYDRA*

System: HYDRA*

Version:

Further specification: | empirical ILP system

Pointers: http://www.ics.uci.edu/"mlearn/HYDRA.html
Code: Common List source code

References: [21]

Other comments:

Table 10: HYDRA': short description of the system.

The relational concept learner HYDRA [21] extends the machine learning program FOCL by
adding likelihood ratios to the induced classification rules. HYDRA learns a concept description
for each class. The concept descriptions compete to classify test examples using the likelihood
ratios assigned to clauses of that concept description. This reduces the algorithm’s susceptibility
to noise.

2.1.11 FORTE*
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System: FORTE"
Version:
Further specification: | empirical ILP system

Pointers: ftp://ftp.cs.utexas.edu/pub/mooney/forte/
Code: Quintus Prolog source code
References: [460]

Other comments:

Table 11: FORTE: short description of the system.

FORTE [460] (First Order Revision of Theories from Examples) is a system for automatically
revising function-free first-order Horn clause theories. FORTE integrates a collection of special-
isation and generalisation operators and conducts an iterative hill-climbing search through the
space of revision operations. The system includes the operators delete-antecedent and delete-rule,
adopted from propositional theory revision, FOIL-like operators for adding antecedents and new
rules, two generalisation operators based on inverse resolution, and an antecedent-adding operator
termed ‘relational pathfinding’. Each iteration of the search identifies all possibilities for applying
the operators. The revision operation resulting in a maximum increase in theory accuracy is per-
formed. The revision process continues as long as revisions produce an improvement in accuracy
or a reduction in theory size.

2.1.12 CHILLIN*

System: CHILLIN™

Version: 1.0 Alpha

Further specification: | empirical ILP system

Pointers: ftp://ftp.cs.utexas.edu/pub/mooney/chillin/

Code: Quintus Prolog (version 3.1.3) source code

References: [591]

Other comments: In the actual implementation, it employs a modified search strategy
in order to gain efficiency. It is able to handle induction problems
with thousands of examples when running on a SparcStation 2.

Table 12: CHILLIN: short description of the system.

CHILLIN [591] is an ILP algorithm combining elements of top-down and bottom-up induction
methods. CHILLIN’s input consists of sets of ground facts representing positive and negative
examples, and a set of background predicates expressed as definite clauses. Examples may contain
functors. Basically, CHILLIN tries to construct a small, simple theory covering the positive, but
not the negative examples by repeatedly compacting its current version of the program. Compact-
ness is measured as the syntactic size of the theory.

The algorithm starts with a most specific theory, namely the set of all positive examples. Then
it generalises the current theory, aiming to find a generalisation which allows to remove a maximum
number of clauses from the theory while all positive examples remain provable.

Similar to GOLEM’s approach, the generalisation algorithm finds a random sampling of pairs
of clauses in the current program. These pairs are generalised by constructing their least-general-
generalisations under theta-subsumption. If a generalisation covers negative examples, it is spe-
cialised by adding antecedents using a FOIL-like algorithm. If the specialisation with background
predicates is not sufficient for preventing negative examples from being covered, CHILLIN tries
to invent new predicates for further specialisation of the clause. At each step, CHILLIN considers
a number of possible generalisations and implements the one that best compresses the theory.
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CHILLIN is able to learn recursive predicates. It avoids generating theories leading to endless
recursion by imposing syntactic restrictions on recursive predicates. However, CHILLIN may
learn recursive predicates covering negative examples.

2.2 Programming assistants

2.2.1 FILP

System: FILP

Version:

Further specification: | programming assistant

Pointers: http://www.gmd.de/ml-archive/ILP/public/software/filp

Code: C Prolog source code

References: [41], [43]

Other comments: The C-Prolog interpreter is provided together with the system and
runs on a SUN SPARCstation 1 as well as on a SUN4/200 under SunOS,
but has problems running under Solaris.

Table 13: FILP: short description of the system.

FILP [41, 43] is an interactive system which learns functional logic programs. Functional
means that for each sequence of input values for a predicate there is exactly one sequence of
output values the predicate produces. This restriction applies to the induced predicates as well as
to the predicates defined in the background knowledge. The functions are required to be total, i.e.,
for any input, an output must exist. The restriction to functional programs does not significantly
affect the expressive power as any computable function can be represented by a functional logic
program. The requirement that functions should be total is more restrictive. However, in practise
some non-total functions can be learned as well (for instance, quicksort not using the append
predicate quicksort(X,Acc,Y)) provided that appropriate examples and background knowledge are
specified.

The restriction to functional programs is central to the approach. As an explicit restriction
of the set of allowed hypotheses, it makes the learning task a lot easier, since it excludes a priori
many clauses which otherwise must be generated and checked against the examples. Furthermore,
it enables FILP to learn from positive examples only, since negative examples of the behaviour of
induced predicates are implicitly given as the ones with the same input values but with different
output values than the positive examples.

Unlike some other approaches, FILP does not require an example set which is complete up
to a certain example complexity for the predicates to be learned, since, due to the functionality
requirement, FILP can determine the examples needed for learning besides the given ones. For
collecting the missing information, FILP queries the user. It presents examples with instantiated
input values, and the user fills in the corresponding output values. This allows to start learning
with a very limited number of initial examples, and more examples are added on request. This
interactive way of example input is more convenient for the user than specifying the whole set of
examples in advance, since FILP asks for all and only for the examples it really needs.

The background knowledge can be defined intensionally or extensionally. When using exten-
sional background knowledge, FILP collects missing information on these background predicates
as well. FILP is able to induce an intensional definition for such background predicates, thus
realizing multiple predicate learning. FILP provably learns complete and consistent programs,
that is, programs that cover all positive and no negative examples. Furthermore, if a complete and
consistent program exists, FILP is guaranteed to find it. This is not the case for other approaches
using extensionally defined background knowledge without example completion.
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FILP works with flattened clauses, where functions are transformed into predicates. Besides
the example set and background knowledge, the information FILP needs for learning includes a
set of all the literals which may occur as body literals in the definition of the induced predicate.
This literal set determines the hypothesis space for learning. As it affects the efficiency of learning
and the number of literals FILP requests, this literal set should be specified carefully.

Furthermore, the user has to provide mode declarations for the induced predicate as well as for
all background predicates. These mode declarations specify which arguments of a predicate are
input arguments and which are output arguments. An aditional means for the user to influence
induction is to declare ‘forbidden clauses’, that is clauses which must not be part of a solution even
if satisfied by the positive examples.

FILP learns list manipulation programs such as member, quicksort or reverse, which are in-
duced within a few seconds. For example, learning a functional variant of the member predicate
member(Elem,List,yes/no) required four examples and about 12 seconds [43].

2.2.2 LILP

System: LILP

Version:

Further specification: | programming assistant

Pointers: http://www.gmd.de/ml-archive/ILP/public/software/1ilp

Code: Poplog Prolog source code

References: [343], [344]

Other comments: Written for Poplog Prolog with Decl0 library. Running it with
Quintus Prolog requires some minor adaptions such as adding
dynamic statements and loading libraries.

Table 14: LILP: short description of the system.

The system LILP [343] encorporates an approach to concept learning from positive-only ex-
amples whose basic technique is borrowed from lambda-calculus. It relies on a generality ordering
between Horn clauses called A-subsumption, which is stronger than §-subsumption and weaker
than generalized subsumption. A-subsumption allows to compare clauses in a local sense, i.e., with
respect to a partial interpretation of the background knowledge. Consequently, the locality of
A-subsumption allows to search for clauses which are correct with respect to a small subset of the
set of atoms they generally cover.

Induction of a single clause starts with a seed example. Variabilizing one argument of the
seed example and keeping the other arguments fixed results in a logical expression which can be
viewed as a function of the variable, say X. This function maps instances of X on true if the
resulting instantiation of the expression matches an example, and on false otherwise. The set of
true instances forms the A calculus model of the expression. The algorithm searches a set of body
literals which defines the set of true instances of the variable. This is done for each head argument
in turn, and the found body literals are combined to a clause body. If more than one clause for a
seed example is found, the system keeps the best one according to the proof complexity criterion.
This technique is embedded into a covering algorithm. LILP postprocesses the clause set in order
to remove redundant clauses. It does not alert the user if is not able to induce a clause set covering
all positive examples.

Like FILP, LILP does not assume a Closed World in the sense that the set of positive examples
up to a given example complexity must be complete. Rather, complete A-models are required.
LILP learns from positive examples, but is able to utilize negative examples if available. By
providing negative examples, the user can force LILP to allow singleton head variables or to
induce the more specific predicate definition when several predicate definitions of varied generality
fit the given data.
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When using LILP, the user has to specify the name and arity of predicates to be used as
background knowledge as well as constants occuring in the examples and not be variabilised in
the predicate definition, thus defining the system’s language bias. The hypothesis language is
further adjusted by two system parameters, one specifying the maximum number of body literals
determining a single head argument, the other defining the maximum number of determinate
literals in a clause. As FILP, LILP works with flattened clauses where functions are defined by
predicates. Structured terms may occur, but are treated as constants. Due to implementation
reasons, lists must not occur in examples. However, at a deeper level they are allowed.

The system is so fast as to induce, e.g., a definition for quicksort from extensionally defined
background knowledge in less than a second.

2.2.3 MARKUS

System: MARKUS

Version:

Further specification: | programming assistant

Pointers: http://www.gmd.de/ml-archive/ILP/public/software/markus/

Code: Prolog source code

References: [244], [245]

Other comments: The system runs without modifications on Quintus Prolog (Vax, Sun),
SICStus Prolog (Sun, HP) and Arity Prolog (IBM PC).

Table 15: MARKUS: short description of the system.

MARKUS [244, 245], a derivative of Shapiro’s Model Inference System MIS [496], is a sys-
tem for inducing Prolog programs from positive and negative examples. Like FILP and LILP,
MARKUS employs a covering strategy. Unlike these systems, MARKUS induces clauses with
functions and is able to start induction with a preliminary incomplement or inconsistent definition
of the target predicate which is then refined.

For inducing single clauses, MARKUS searches a refinement graph. The search starts with the
most general clause which is specialised by applying the refinement operators taken over from MIS.
In contrast to MIS, MARKUS generates an optimal refinement graph, i.e., a refinement graph
without duplicate nodes, thus improving efficiency. The refinement graph is searched by iterative
deepening search. When MARKUS encounters a clause covering at least one yet uncovered positive
and no negative example, the clause is added to the predicate definition. Redundant clauses are
removed from the predicate definition.

As MARKTUS realizes an exhaustive search, restricting the hypothesis space is crucial for
learning. Therefore, MARKUS offers elaborate mechanisms for explicit and implicit declaration
of the language bias. First of all, the language bias which is defined implicitly by the refinement
operator can be adjusted to the learning task by choosing the appropriate refinement operator, as
MARKTUS offers a refinement operator for learning DCG clauses and a general refinement operator
for inducing logic programs. The application of the general refinement operator is guided by in-
put/output mode declarations and type definitions for the arguments of the target and background
predicates specified by the user. A set of parameters determines the form of clauses generated by
the refinement operator. E.g., these parameters allow to define the maximum number of body
literals, and the maximum structure depth of head arguments. For further tuning of the search
space, the user can specify various concrete syntactic restrictions within individual type and back-
ground predicate definitions in a uniform manner. E.g., these restrictions make it possible to define
argument symmetry or to prevent particular combinations of literals.

MARKUS is a non-interactive learner, learning from positive and negative examples which
offers various options for adjusting the system bias. It uses logic with functors and is able to
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generate hypothesis clauses with negated body literals. The background knowledge is defined
intensionally. The user has to provide mode declarations and type definitions for the arguments of
target and background predicates.

With default parameter settings, MARKUS learns quicksort from 4 positive and 3 negative
examples in 24.317 seconds on a Sun4/100.

2.3 Interactive ILP systems
2.3.1 MOBAL

System: MOBAL

Version:

Further specification: | interactive ILP system

Pointers: http://nathan.gmd.de/projects/ml/mobal/mobal.html

Code: executable, running on Sun Sparcs (sun arch 4) only

References: [375]

Other comments: Its interface is based on Tcl/Tk. The windowing system (Open Windows,
Motif, etc.) is irrelevant as long as it is based on X11. The current
version of the system is developped under SunOS 4.1.x, but
running it under Solaris has shown to be unproblematic as well.

Table 16: MOBAL: short description of the system.

MOBAL [375] is a knowledge acquisition environment which assists the user in developing a
model of an application domain in a first-order logical representation formalism. It implements
the balanced cooperative modeling paradigm where knowledge acquisition is viewed as a cyclic and
highly interactive modeling process. The system comes with a convenient graphical user interface
providing means for manual input and inspection of a domain model, and access to a range of tools
covering many of the substasks involved in knowledge acquisition, e.g., automated discovery of
rules, knowledge revision, and theory restructuring. Additionally, MOBAL facilitates integration
of external ILP tools, thus extending its own method pool as well as adding an interactive graphical
interface to non-interactive ILP programs.

MOBAL’s internal learning algorithm RDT solves the ILP task by inducing rules from positive
and negative examples. The negative examples can be listed explicitly by the user or, optionally,
can be defined implicitly via the Closed World Assumption. The logical dialect used by RDT is
the function-free subset of Horn clause logic extended by negated literals. Negation is not treated
as negation by failure as, for instance, in FOIL, but rather as proper negation, i.e., the negation
of an atom is considered as true only when there exists a corresponding negated fact.

RDT requires extensionally defined background knowledge for learning. If intensional predicate
definitions are entered into the system, MOBAL’s built-in inference engine efficiently computes the
corresponding extensional predicate definitions up to a prespecified depth limit. RDT’s hypothesis
space is spanned by a set of rule models specified by the user. A rule model is a rule where predicate
variables replace actual domain predicates. RDT searches the hypothesis space defined by the given
rule models by instantiating the predicate variables with compatible domain predicates.

Compatibility of predicates is defined with respect to a sort taxonomy and predicate topol-
ogy holding in the domain model. The sort taxonomy divides the arguments of predicates into
classes. The predicate topology reflects the inferential structure of the domain, i.e., it states which
predicates are useful for defining other predicates. Ensuring that argument sorts and predicates
in an instantiated rule model are compatible excludes useless rules from the hypothesis space.
User-defined parameters control when to accept a rule as a hypothesis clause. Among others, these
parameters take into account the number of positive and negative instances of the rule.
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Rule models, sort taxonomy, and predicate topology enable very fine-grained adjustment of
RDT’s hypothesis space with explicit user control, however at the price that their specification
can be quite demanding. Assistance in this task is offered by MOBAL’s tools MAT (Model
Acquisition Tool), PST (Predicate Structuring Tool), and SST (Sort Taxonomy Tool), which
automatically derive rule models, a predicate topology, and a sort taxonomy from the current
domain model. These provide insight into the structure of the domain model evolved so far and
serve as a starting point for the specification of the structure of the intended domain model.

Further important components of MOBAL are a knowledge revision tool (KRT), a concept
learning tool (CLT), and a theory restructuring tool (RRT). KRT assists in correcting inconsis-
tencies which may arise while gradually developing a knowledge base. MOBAL’s concept learning
component CLT learns concept definitions from examples. Whereas rule induction algorithms
such as RDT or FOIL usually produce rules stating sufficient conditions for a concept, CLT also
searches for necessary conditions as well as for all other rules that use the concept. These tools
interact in the following way. When the knowledge revision process indicates that more concepts
are needed for the compact representation of the revised knowledge base, KRT calls CLT for the
generation of such concepts. Thus, the system realizes predicate invention. For learning rules for
the new concepts, CLT calls RDT.

MOBAL’s theory restructuring tool (RRT) assesses the quality of the domain theory according
to a set of formal and statistical criteria and helps to clean up the knowledge base.

In summary, MOBAL is a complex and sophisticated system, and fully exploiting its func-
tionality requires some training. Usage and getting started are facilitated by a comprehensive
userguide and an online tutorial.

2.3.2 MILES

System: MILES

Version:

Further specification: | interactive ILP system

Pointers: http://www.gmd.de/ml-archive/ILP/public/software/miles

Code: Quintus Prolog (version 3.1.1) source code

References: [525]

Other comments: For using the system’s X interface, version 3.1.1 is strictly required,
later versions will fail.

Table 17: MILES: short description of the system.

MILES [525] is an ILP test environment designed to facilitate experiments with ILP methods
and algorithms. It is not a ready-to-use ILP system in the sense that a user provides examples
and background knowledge and the system returns a consistent theory. Rather, MILES contains
an extensive collection of ILP operators used by common ILP algorithms and systems without
embedding these operators into a fixed control mechanism and facilitates the integration of new
operators. Thus, MILES is useful for investigating and comparing the effects of the available and
newly defined operators as well as in teaching ILP methods. MILES facilitates rapid prototyping
of specific ILP systems by adding a control mechanism which guides the application of operators
taken from MILES’s operator pool. A generic control procedure is provided.

MILES contains five types of operators, namely generalisation operators, specialisation opera-
tors, for generalising or specialising clauses or sets of clauses, reformulation operators, preprocessing
operators, and evaluation operators.

The generalisation operators generalise single clauses or sets of clauses. MILES provides six
variants of least general generalisation operators (e.g., the rlgg operator used by GOLEM), nine
inwverse resolution operators and five truncation operators. There are four specialisation operators
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for single clauses (including three of the MIS operators also applied by MARKUS). Specialisation
of sets of clauses is performed by a minimal base revision operator similar to the MOBAL’s revision
operator KRT. This operator and the fourth single clause specialisation operator specialise by
inventing new predicates. The reformulation operators transform the knowledge base equivalently
in order to facilitate the learning task. MILES provides a reduction operator for single clauses
and the flattening /unflattening operators which transform a knowledge base into function-free logic
and vice versa.

MILES’ preprocessing operators serve for extracting implicit informations from the examples
and for initializing hypothesis clauses. The first operator automatically determines argument
types for all example predicates. The second operator determines a set of clause heads covering
the positive examples based on the structure of the example arguments.

The evaluation operators defined in MILES assess the quality of the knowledge base accord-
ing to different criteria. MILES contains predicates for checking whether the knowledge base is
complete and consistent with respect to the examples and procedures for detecting culprit clauses,
in case that it is not complete nor consistent. MILES provides an operator for evaluating the
clauses in the knowledge base by determining the positive and negative examples they cover as
well as the derivations of examples in which the clauses participate. These informations allow to
compute commonly employed measures as, for instance, the information gain used by FOIL. Fur-
thermore, MILES contains two operators for computing the compression of the knowledge base.
These operators can be instantiated with six different encoding schemes.

The generic control procedure available in MILES takes twelve parameters. These have to
be instantiated with predicates defining the initialization of the hypothesis, a stopping criterion
for the induction process, a quality criterion for accepting hypothesis clauses, the selection of
the appropriate refinement operator etc. Example instantiations of the generic control realizing
ILP algorithms for special types of logic programs (regular unary logic programs, definite clause
grammars, constrained programs), and a FOIL-like algorithm are included.

Comparing MILES to MOBAL we find out that, although the systems contain similar com-
ponents (knowledge base access and maintenance procedures, an inference mechanism, knowledge
induction and revision operators, mechanisms for deriving argument types, theory evaluation cri-
teria) they serve quite different purposes. Whereas MOBAL provides an ILP toolbox to be used
for applications, MILES is a toolbox for investigation of and experimentation with ILP methods.
Since MILES serves for rapid prototyping of ILP algorithms, it may also be viewed as an ILP
construction kit. As MILES is a very flexible system providing a large range of operators with
various parameters and options, a user either requires good knowledge of ILP or the willingness to
acquire it. MILES offers a graphical X interface which, however, does not include access to the
generic control. Usage and function of the operators are described in detailed comments in the
source code of MILES.

2.3.3 CLINT

System: CLINT

Version:

Further specification: | interactive ILP system

Pointers: http://www.gmd.de/ml-archive/ILP/public/software/clint

Code: executable for Apple Macintosh

References: [105], [129]

Other comments: It runs on Apple Macintosh computers under system 7 with
at least two megabytes of free memory. It offers a convenient
window-based interface designed according to Apple’s standards.

Table 18: CLINT: short description of the system.
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CLINT [105, 129] is an interactive theory revisor which allows the user to incrementally build
and revise a logical knowledge base. It is often described as opportunistic, i.e., learning self-
initiatively whenever possible, and user-friendly, i.e., easy to use without knowledge of its internal
mechanisms.

CLINT is interactive in the sense that it queries the user in order to collect missing information
on the predicates to be learned. The queries posed by CLINT are moderately complex, being either
membership questions (the user is asked whether a given ground fact is true or false in the intended
knowledge base), or existential questions (the user is asked to enter a ground substitution for a
given non-ground fact such that the instantiated fact is true in the intended knowledge base). This
contrasts to interactiveness in MOBAL’s sense, where interactive means that the user and the
system’s components cooperate and, in particular, that the system relies on the user to determine
which step should be taken next.

CLINT’s prominent features include the integration of an integrity theory defining constraints
satisfied by the knowledge base, an abductive component, postponing of examples, parameterized
language series for declaring and shifting the system’s language bias, and a set of special multi-
valued logical frameworks to be chosen by the user.

CLINT learns from positive and negative examples and from integrity constraints. Its hypoth-
esis language is a subset of range-restricted functor-free Horn logic. Building and revising complete
knowledge bases, CLINT is able to learn multiple predicates, so that the examples may concern
several predicates.

CLINT’s basic algorithm is a loop where the user repeatedly enters a new example or integrity
constraint and CLINT revises the current theory in order to make it consistent with the new
input. First, we briefly sketch the way CLINT processes examples. If the user enters examples
consistent with the current theory, it suffices to simply remember these examples, otherwise the
theory has to be revised. If a newly entered negative example is covered by the theory, CLINT
searches the clauses used for proving the negative examples for an incorrect clause and retracts it.
The incorrect clause is identified with the help of user queries. Positive examples which become
uncovered by removing the incorrect clause are input into CLINT’s basic loop and thus trigger
further theory revision. If CLINT encounters an uncovered positive example, it calls its abductive
or inductive procedure. The abductive procedure completes the knowledge base by learning new
facts. It constructs incomplete proofs of the uncovered positive example which are to be completed
by entering ground facts to the theory (without making the theory inconsistent).

If no such facts can be found, the inductive procedure for learning new rules is triggered.
CLINT’s induction algorithm consists of two steps. In the first step, the so-called justifications
for positive example are generated. A justification is a most specific Horn clause covering the
positive example and not covering any negative examples. In the second step, the justifications are
generalised by dropping literals. CLINT relies on negative examples and user queries to determine
which literals can be dropped safely.

The justifications which can be constructed for a positive example depend on the hypothesis
language the system employs. In CLINT, parameterized languages are used for declaring the
language bias. The language parameters specify the number and depth of variables in hypothesis
clauses. The languages are ordered into sequences with increasing generality. If the system detects
that the current language is not sufficient for learning a consistent predicate definition, it auto-
matically shifts its bias to the next general language in the series. CLINT offers four predefined
series, but the user may customize additional series as well.

Postponing of examples becomes necessary when none of the available languages contains a
consistent justification for a positive example. In this case, the knowledge base misses relevant
information. CLINT then automatically postpones the uncovered positive example until more
information is available.

CLINT can learn from integrity constraints as well. An integrity constraint is a first-order
clause describing properties of the knowledge base to be built. CLINT treats integrity constraints
as generalised examples. Roughly speaking, this is done as follows. If CLINT detects that an

19



integrity constraint is violated by the current knowledge base, the violated literal in the constraint
is located via user queries. A violated body literal (i.e., a body literal that is wrongly true when
instantiated by the violated substitution of the constraint) corresponds to a negative example, a
violated head literal (i.e., a literal that is wrongly false) corresponds to a positive example. Both
cases are passed into CLINT’s main loop and processed accordingly.

Among a range of other user-adjustable parameters, CLINT enables the user to select a suitable
logical framework. Besides the default setting, where negation is treated as negation by failure,
there are three variants of multi-valued logic, providing the truth-values inconsistent, unknown or
both of them in addition to the truth-values true and false.

2.4 Alternative ILP tasks
2.4.1 Inductive data engineering: INDEX

System: INDEX

Version:

Further specification: | alternative ILP system

Pointers: ftp://ftp.gmd.de/MachineLearning/ILP/public/software/index/
Code: Prolog source

References: [210]

Other comments: It is an experimental system, not able to process large datasets.

Table 19: INDEX: short description of the system.

INDEX [210] is a system for inductive data engineering. Inductive data engineering denotes
the interactive process of restructuring a knowledge base by means of induction.

The underlying idea is to analyse a given database in order to detect hidden regularities which
can be used for restructuring the database, yielding a more compact and meaningful representation.
This approach does not conform to the classical ILP setting where the aim is to induce a hypothesis
which, when combined with the background theory, explains the given examples, thus completing
the theory. Rather, the approach uncovers information which is, though hidden, already present
in the data. As Flach states, the process is nonetheless inductive, since it derives general rules
from specific data [210]. The general setting, of which INDEX realizes a variant, is called the
nonmonotonic setting of ILP [403] or the confirmatory setting of ILP [214].

INDEX expects as input an extensional relation, that is, a set of ground facts defining the re-
lation. This relation is searched for funtional and multi-valued dependencies among the attributes,
i.e., arguments of the relation. Let X and Y denote sets of attributes. A functional dependency
X — Y states that whenever two tuples in the relation have identical values of attributes X, they
also have identical values of attributes Y. A multi-valued dependency X —— Y generalises a
functional dependency to sets of values of the dependent attributes. This means that the values
of the dependent attributes Y are not determined uniquely by the values of the attributes X, but
rather, each of a fixed set of attribute value combinations of Y occurs in the relation for given val-
ues of X. INDEX searches the relation for functional and multivalued dependencies in a MIS-like
manner [496], thereby exploiting the generality ordering of dependencies.

In the second step, INDEX restructures the relation, based on the attribute dependencies
it has found to be holding in or violated by the relation. In either case, restructuring means
that the relation is split into smaller relations allowing to reconstruct the original relation. Since
the restructuring of the database involves the construction of new relations, INDEX performs
predicate invention.

If an attribute dependency X — Y or X —+— Y is found to hold in the relation, it induces
a so-called horizontal decomposition. The dependent attributes Y are removed from the original
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relation, and stored in a separate relation together with the determining attributes X. This yields
two new, smaller relations from which the original relation is reconstructed by a JOIN operation
on the common attributes X. This type of split of a relation is called a horizontal decomposition
since it is to reverted by the horizontal JOIN operation [210]. If INDEX discovers a satisfied
attribute dependency, it automatically performs the horizontal decomposition and constructs the
clause which expresses the join reverting it. INDEX queries the user to enter meaningful names
for the new relations resulting from the decomposition.

Attribute dependencies which are violated in the relation induce vertical decompositions of a
relation. The relation is divided into smaller relations such that the attribute dependency holds in
each of the partial relations. This type of decomposition operation is reverted by UNION operations.
In general, an attribute dependency induces many alternative decompositions of a relation. The
selection of meaningful decompositions is guided by heuristics, but still requires user interaction.

2.4.2 Clausal discovery: CLAUDIEN

System: CLAUDIEN

Version: 3.0

Further specification: | alternative ILP system

Pointers: http://www.cs.kuleuven.ac.be/cwis/research/ai/Research/claudien-E.shtml
ftp://ftp.cs.kuleuven.ac.be/pub/logic-prgm/ilp/dlab

Code: BIM Prolog

References: [131], [135]

Other comments: Available for academic purposes as a stand-alone system running without a Bim

use of it, thereby significantly improving its execution times. The DLab
mechanism is also available as a Prolog library for the use with concept
learning and knowledge discovery approaches other than CLAUDIEN.

Prolog system. If a Bim Prolog compiler is available, CLAUDIEN is able to make

Table 20: CLAUDIEN: short description of the system.

The interactive system CLAUDIEN [131, 135] performs the task of clausal discovery, that is,
it searches a given database for hidden regularities. Both the database and the regularities are rep-
resented as first-order clausal theories. As the system INDEX, CLAUDIEN belongs to nonmono-
tonic setting of ILP. Whereas INDEX utilises detected regularities for restructuring the database,
CLAUDIEN regards the discovered regularities as an aim of themselves. As CLAUDIEN pro-
vides a powerful mechanism for specifying the type of regularities to be detected, CLAUDIEN
can be applied for detecting various kinds of regularities in databases, such as integrity constraints
in databases, functional dependencies and determinations, or properties of sequences.

The basic principle of CLAUDIEN’s discovery algorithm is to subseqently generate the clauses
contained in the hypothesis language and check them against the database. The clauses which are
found to represent an actual regularity of the data are added to the hypothesis. The algorithm
searches the hypothesis space from general to specific, thereby exploiting the subsumption relations
among of clauses for pruning the search space. While running, CLAUDIEN successively enlarges
the set of discovered regularities. The longer the algorithm runs, the more regularities may be
found. As the search outputs a valid hypothesis whenever it is interrrupted, CLAUDIEN can be
regarded as an anytime algorithm.

CLAUDIEN’s background theory and examples (termed ‘observations’) are represented as
conjunctions of first order Horn clauses. The hypothesis may consist of arbitrary clauses. CLAU-
DIEN incorporates a mechanism for the syntactical declaration of the hypothesis language called
DLAB. This mechanism allows the user to specify general clause templates for hypothesis clauses.
Each template defines sets of clauses. DLAB derives refinement operators from the clause templates
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which map the expansion of the template into clause sets on sequences of specialisation operations
under theta-subsumptions. This enables enables pruning of the search.

CLAUDIEN provides a range of control parameters. Some of these allow further control of
the hypothesis language. Another group concerns semantical aspects of the hypothesis as, e.g., the
minimum accuracy and coverage of discovered clauses. Additionally, the user can choose among
four search strategies. Optionally, the system can be requested to produce non-redundant hy-
potheses, that is, hypotheses not containing clauses which are logically entailed by the background
knowledge or other discovered regularities. Furthermore, CLAUDIEN provides mechanisms for
the convenient management of different configurations of discovery experiments.

3 ILP datasets

A variety of ILP-related datasets have been made available as a result of ILPNET activities.
Most come from several broad application areas, which are: molecular biology, finite element
mesh design, natural language processing, the area of modelling, diagnosis and control, and chess.
Speaking very roughly, the areas are listed in descending order according to how close to real
life the applications (from which the datasets originated) are. Sample datasets that illustrate
the input/output performance of several ILP systems have been also made available, as well as
several datasets that do not fall in the above application areas and are put together under the
heading ‘miscellaneous’. Datasets not originating from the ILPNET consortium are marked with
an asterisk (*).

3.1 Molecular biology datasets

Two main ILP applications have emerged in the area of molecular biology: predicting protein
secondary structure and learning rules for predicting structure-activity relationships (SARs). Sev-
eral applications of the latter type exist in the area of drug design, notably for pyrimidines and
triazines, drugs for Alzheimer’s disease, and suramin analogues. Predicting mutagenesis is also
an instance of the problem of predicting structure-activity relationships. While this problem is
mostly addressed in its quantitative form (predicting QSARs), ILP systems address the problem
of comparing the activities of pairs of drugs or distinguishing active from inactive compounds.

3.1.1 Learning rules for predicting protein secondary structure

Application domain: Learning Rules for Predicting
Protein Secondary Structure
Further specification: | datasets, html and KTEX documentation

Pointers: http://www.comlab.ox.ac.uk/oucl/groups/machlearn/proteins.html
Dataset size: 46 KB (tar, gzip)

Data format: GOLEM

References: [406]

Table 21: Predicting protein secondary structure: dataset short description.

Predicting the secondary structure (three-dimensional shape) of proteins from their amino acid
sequence (primary structure) is widely believed to be one of the hardest unsolved problems in
molecular biology. The amino acids can be arranged in different patterns (spirals, turns, flat
sections etc.) which are of considerable interest to pharmaceutical companies since a protein’s
shape generally determines its function as an enzyme. The dataset of 16 proteins (consisting of
20 aminoacids), studied in [406], has been created with the goal to learn rules to identify whether
a position in a protein is in an alpha-helix. The positive examples state which positions of the
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chosen proteins are in an alpha-helix and the negative examples identify the positions which are
not in an alpha-helix.

The constants of the considered language denote all the 20 existing amino acids and the values
of some physical or chemical properties, such as sizes, hydrophobicities, and polarities (e.g., polar0
and polar1). The background knowledge is expressed using the following predicates:

e position(A,B,C) meaning “residue of protein A at position B is C”.

e octf(4,B,C,D,E,F,G,H,I) provides information that allows to index groups of nine adjacent
positions in a protein (positions A-I occur in sequence).

e alpha triplet(A,B,C), alpha pair(A,B), index groups of three or two adjacent positions
in a protein, respectively.

e alpha pair4(A,B) holds if a pair of positions A, B is separated by 4 positions in a protein.

Additional unary predicates characterize some physical and chemical properties of the individual
residues (hydrophobicity, hydrophilicity, charge, size, polarity, whether a residue is aliphatic or
aromatic, whether it is a hydrogen donor or acceptor etc.). Ordering relations between some
constants, such as less_than(polarO,polarl), are also provided.

3.1.2 Learning structure-activity rules for pyrimidines and triazines

Application domain: Structure-Activity Rules

for Inhibition of E. Coli Dihydrofolate Reductase
Further specification: | two datasets (pyrimidines and triazines)

html and BTEX documentation

Pointers: http://www.gmd.de/ml-archive/ILP /public/data/drug
http://wwwcomlab.ox.ac.uk/oucl/groups/machlearn/e_coli.html

Dataset size: 3.5 MB

Data format: GOLEM

References: [294], [297]

Table 22: Learning SARs for pyrimidines and triazines: dataset short description.

Structure activity relationships (SAR) describe empirically derived relationships between the
chemical structure and the activity of considered drugs. In a typical SAR problem a set of chemicals
of known stucture and activity are given, and the goal is to construct a predictive theory relating
the structure of a compound to its activity. Both available datasets, described in [294] and [297]
concern the classical drug design problem of inhibition of E. Coli Dihydrofolate Reductase by
pyrimidines and triazines.

Pyrimidine compounds are antibiotics based on a common template to which chemical groups
can be added at 3 possible substitution positions. A chemical group is an atom or a set of struc-
turally connected atoms (that can be substituted together as a unit) characterized by well defined
chemical properties. Some of these properties are encoded within the background knowledge as
facts, e.g., the fact polar(br,polar3) states that bromine atoms have polarity 3. Pyrimidine
compounds are identified by the substituents at the 3 substitution positions. Examples are pairs
of drugs, positive when the activity of the first is known to be higher than that of the second and
negative otherwise.

Triazines act as anti-cancer agents by preferentially inhibiting reproducing cells. Like pyrim-
idines, they have a common template, but this one is much more complicated with 5 possible
substitution positions. The research goal is to find rules for predicting the activity of different
compounds. This task and its structure are closely related to the pyrimidine problem.
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3.1.3 Learning structure-activity rules in drugs for Alzheimer’s disease

Application domain: Learning Structure-Activity Rules
in Drugs for Alzheimer’s disease
Further specification: | datasets, html and BTEX documentation

Pointers: http://www.comlab.ox.ac.uk/oucl/groups/machlearn/drugs.html
Dataset size: 37 KB

Data format: Prolog

References: [297]

Table 23: Learning SARs in drugs for Alzheimer’s disease: dataset short description.

Low toxicity is a conditio sine qua non when searching for a new drug treatment of any disease.
The following specific properties are considered as essential in the case of Alzheimer’s disease:

e high acetocholinease inhibition,
e good reversal of scopolamine induced deficiency and
e inhibition of amine re-uptake.

Recently the drug Tacrine has drawn considerable attention as it exhibits the requested specific
effects. Unfortunately, large scale clinical tests show its high toxicity. Variants of Tacrine have
been studied which are created by substituting new components for its R and X subgroups.

From the Alzheimer’s disease dataset, the problem is to find rules concerning the upper men-
tioned properties from the positive and negative examples providing pairwise comparisons of vari-
ous drugs. To describe the required background knowledge a representation is used that is similar
to the one used for predicting protein secondary structure. Moreover, additional information is
included:

e Some physical and chemical properties of chemicals that can be substituted for R or X. These
are described by unary predicates in the background knowledge, such as hydrophobicity,
hydrophilicity, charge, size, polarity, etc.

e The predicate x_subst(Drug,Position,Subs) states that the X substitution for Drug in
position Position is Subs.

e The R substitution is split into parts corresponding to bonds between different chemical
structures.

e Sometimes the R substitution involves the presence of one or more ring structures. These are
benzyl derivatives that arise from substitutions within the basic benzene ring structure. The
number of such substitutions in the basic benzene structure, the position of the substitutions
and the actual substituent are provided.

The obtained results have been published in [297].

3.1.4 Learning structure-activity rules in suramin analogues

Suramin analogues act as anti-cancer agents by interfering with the formation of blood vessels
for the tumor. Using the atomic structure and bond relationships present in suramin compounds,
the task for an ILP system is to discover structural features that can be used to improve such
compounds. Formally, this goal is closely related to the problem studied in connection with the
Alzheimer’s disease. The structure of the data and the language applied are closely related to the
Alzheimer’s case.
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Application domain: Learning Structure-Activity Rules
for Suramin Analogues
Further specification: | datasets, html and B'TEX documentation

Pointers: http://www.comlab.ox.ac.uk/oucl/groups/machlearn/drugs.html
Dataset size: 23KB (7 positive and 4 negative examples)

Data format: PROGOL

References:

Table 24: Learning SARs for suramin analogues: dataset short description.

3.1.5 Learning rules for predicting mutagenesis

Application domain: Learning Rules for Predicting Mutagenesis

Further specification: | datasets, html and BTEX documentation

Pointers: http://www.comlab.ox.ac.uk/oucl/groups/machlearn/
mutagenesis.html

Dataset size: 131 KB compressed file with positive and negative
examples for the subsets of 188 and 42 compounds

Data format: PROGOL

References: [296], [511], [512], [513]

Table 25: Learning rules for predicting mutagenesis: dataset short description.

The prediction of mutagenesis is important as it is relevant to the understanding and prediction
of carcinogenesis. Not all compounds can be empirically tested for mutagenesis, e.g. antibiotics.
The considered dataset has been collected with the intention to search for a method for predicting
the mutagenicity of aromatic and heteroaromatic nitro compounds. It comprises 230 compounds.

Mutagenicity is measured by the Ames test using S. typhimurium TA98. Of the 230 compounds,
138 have positive levels of log mutagenicity and are labeled as active, i.e., are treated as positive
examples. The remaining 92 compounds are treated as negative examples.

The basic background knowledge contains the generic description of the compounds consisting
of the constituent atoms and their bond connectivities. Each compound is represented by a sets
of facts of the form: atm( 127, 127_1, c, 22, 0.191 ) and bond(127, 127_1, 1276, 7 ).
These two predicates give a completely generic method of describing molecular structure in drug
design. They also allow a straightforward definition of generic chemistry knowledge that defines
higher level chemical concepts (for example, ring structures). Some definitions of this kind are also
provided with the dataset.

Four additional attributes are provided for each compound:

e its hydrophobicity,
e the energy level of the lowest unoccupied molecular orbit,

¢ two boolean valued attributes identifying components with ‘three or more benzol rings’ and
compounds termed accenthryls.

The considered nitro compounds are more heterogeneous structurally than any of those in
the other ILP datasets concerning chemical structure activity. Results of relevance to the ML
community are available in [511, 512, 513], relevant chemical results can be found in [296].
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3.2 Finite element mesh design

The datasets on finite element mesh design come from the area of mechanical engineering where
finite element meshes are used to analyse the behaviour of structures under different kinds of stress.
The problem addressed here is to determine an appropriate resolution of a finite element mesh for
a given structure so that the corresponding computations are both accurate and fast. A complete
and a partial dataset exist, the latter containing data on five of the ten structures described in the
former.

3.2.1 Finite element mesh design (complete dataset)

Application domain: | Finite Element Mesh Design (complete dataset)

Further specification: | dataset

Pointers: http://www.gmd.de/ml-archive/general /data/mesh_design
Dataset size: 642 positive examples + 3804 background facts

Data format: Prolog facts

References: [155], [160], [173], [158], [156]

Table 26: Finite element mesh design: short description of the complete dataset.

The resolution of a finite element (FE) mesh is determined by the number of elements on each
of its edges. It depends on the geometry of the body studied and on the boundary conditions.
Given are descriptions of ten structures for which experts have determined an appropriate mesh
resolution. The positive examples are of the form mesh (Edge ,NumberOfElements). The task is to
learn rules that determine an appropriate resolution of a FE mesh (i.e., an appropriate resolution
for each given edge) from the geometry of the body, the types of edges, boundary conditions and
loadings.

The background knowledge can be divided into two parts: attribute description of the edges
and geometric relations between the edges. The first part consists of unary predicates that have
edges as arguments. These predicates can be grouped in three subgroups:

e predicates that describe the type of the edge (long, usual, short, circuit,
half circuit, quarter_circuit, short_for_ hole, long for hole, circuit hole,
half circuit hole, quarter circuit hole, not_important),

e predicates that describe the supports of the edge (free, one_side_fixed,
two_side fixed, fixed),

e predicates that describe the loads (not_loaded, one_side_loaded, two_side_loaded,
cont_loaded).

The second part contains the binary relations neighbour and opposite, that describe the geo-
metrical relations between edges. These two relations are nondeterminate. A determinate version
also exists, where each of the two relations is replaced with three relations, e.g., neighbour xy,
neighbour_yz, and neighbour_zx.

The problem domain and early results (obtained on the partial dataset) are described in [155,
160, 158, 173]. The complete dataset and experiments on this dataset with CLAUDIEN are
decribed in [156].

3.2.2 Finite element mesh design (partial dataset)

This dataset is a preliminary version of the more complete dataset described above. It is based
on the descriptions of five structures for which experts have determined an appropriate mesh
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Application domain: | Finite Element Mesh Design (partial dataset)

Further specification: | dataset

Pointers: http://www.comlab.ox.ac.uk/oucl/groups/machlearn /mesh.html
Dataset size: 57 KB (tar, gzip)

Data format: GOLEM

References: [160]

Table 27: Finite element mesh design: short description of the partial dataset.

resolution. Only the determinate version of the geometrical relations is provided, as this particular
version of the dataset has been used for experiments with GOLEM, as reported in [160].

3.3 Natural language processing datasets*

This section includes the descriptions of three datasets that originate from applications in the area
of natural language processing: natural language parsing, mapping natural language queries to
database queries, and the formation of the past tense form of English verbs. A dataset originating
from the related application domain of document understanding is also described.

3.3.1 Natural language parsing (M&K data)*

Application domain: Natural Language Parsing (M&K Data)*

Further specification: | dataset and papers

Pointers: ftp:/ /ftp.cs.utexas.edu/pub/mooney/nl-ilp-data
ftp:/ /ftp.cs.utexas.edu/pub/mooney/papers/chill*

Dataset size: 1450 facts

Data format: Prolog

References: [588], [589]

Table 28: Natural language parsing M&K data: dataset short description.

The problem addressed here is the construction of semantic grammars. This is a difficult and
interesting problem which has been treated by machine learning techniques recently [588], view-
ing the semantic-grammar acquisition problem as a problem of learning search-control heuristics.
Appropriate control rules are learned using the first-order induction algorithm CHILL that auto-
matically invents useful syntactic and semantic categories. The logic programming formalism is
used to represent these control rules. The learning task can be also viewed as an n-way categoriza-
tion problem for complex tuples. Empirical results show that the learned parsers generalize well
to novel sentences and outperform previous approaches based on connectionnist techniques [589).

The data come in two ILP formats:

1. Examples of the predicate parse, which contain pairs of sentences with their case-role anal-
ysis, such as:

parse([the,man,ate], [ate,agt: [man,det:thell).

2. Control examples for parsing the input sentences using a shift/reduce parser. Transitions
of the parser are described by 4-tuples (Stack,Input,NewStack,NewInput). In this data
set, lists of parser states where the first two atributes Stack, Input are instantiated, are
matched to the corresponding semantic attachment of the stack items. Consider the following
examples:
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op([S1,52|SRest] ,Inp, [SNew|SRest] ,Inp) :- attach(S1,prep,S2,SNew).

op([[rock,det:the] ,with, [hit,pat:[rock,det:thel],agt: [girl,det:the]]], ],
NewStack,NewInput) .

op([[hammer,det:the] ,with, [hit,pat: [rock,det:the],agt: [girl,det:the]]], ],
NewStack,NewInput) .

In the two instantiated clauses of op/4 shown above, the first two items of the stack will be
attached to each other (according to the general clause at the top) and will produce a prepositional
phrase.

More details on this approach can be found in the papers on CHILL, which are accessible via
ftp (see table). M&K stands for McCelland and Kawamoto, since this artificially generated data
originates from their work.

3.3.2 Mapping natural language queries to database queries (Geoqueries)*

Application domain:

Mapping natural language queries
to database queries (Geoqueries)*

Further specification:

dataset and papers

Pointers:

ftp.cs.utexas.edu/pub/mooney/nl-ilp-data

ftp://ftp.cs.utexas.edu/pub/mooney/papers/chill-dissertation-95.ps
ftp://ftp.cs.utexas.edu/pub/mooney/papers/chill-bkchapter-95.ps

Dataset size: 250 facts
Data format: Prolog
References: [590]

Table 29: Geoqueries: dataset short description.

These are data for natural-language learning experiments (Geoquery) in a form suitable for
ILP systems. The set of examples relates English queries about a simple U.S. geography database
to executable Prolog queries and has the following form:

parse ([how,many,people,live,in,hawaii,?],
answer (B, (population(A,B) ,const(A,stateid(hawaii))))).

ILP is applied to induce rules defining an appropriate natural-language database front-end [590].
Details are in the dissertation of Zelle which is available on-line via ftp along with a summary in
a book chapter (see table). This data set is also related to the task described in the previous
subsection.

3.3.3 English past tense*

Application domain:
Further specification:
Pointers:

English past tense”

datasets and papers

ftp.cs.utexas.edu/pub/mooney/nl-ilp-data
ftp://ftp.cs.utexas.edu/pub/mooney/papers/foidl-jair-95.ps
ftp://ftp.cs.utexas.edu/pub/mooney /papers/foidl-bkchapter-95.ps

Dataset size: 1392 facts
Data format: Prolog
References: [362], [335]

Table 30: English past tense: dataset short description.

28



This dataset provides a Prolog form of the data studied in [335], originally assembled by Brian
McWhinney at CMU. The dataset contains the past-tense of a set of English verbs. The data
are divided into three files. The file alphabetic-past-data contains the normal English spelling
forms for the verbs and their past tense forms. An example fact from this file is:

Past([’A’,,I,,,D,],[,A,,’I,,,D’,,E,,,D’])-

The file phonetic-past-data contains the phonetic forms for all of the verbs in the data set and
regular-phonetic-past-data contains the phonetic forms for the regular verbs only. Finally, the
file past-background-defn consists of the intensional definition for the predicate split/3, the
background predicate used in experiments on this dataset with FOIDL and IFOIL [362].

3.3.4 Document understanding*

Application domain: Document understanding”™

Further specification: | datasets

Pointers: http://www.gmd.de/ml-archive/general/
data/doc-understanding

Dataset size: 112 KB (compressed files)

Data format: FOCL format, FOIL format

References: [339], [194], [195], [494], [196]

Table 31: Document understanding: dataset short description.

The problem considered here is to classify some parts of a business letter using informa-
tion about the layout of a one page document. There are five concepts to be learned. These
concepts are expressed as predicates, namely sender, receiver, logotype, reference number
and date. The representation used characterizes some properties of the text-blocks (their width
and height, their position in a page etc.), as well as the relative positioning of two blocks (e.g.,
aligned-only-upper-row(X,Y)).

The problem is complicated by the presence of dependencies among the five target concepts.
The problem can be cast as a multiple predicate learning problem. Experimental results prove that
learning contextual rules, that is rules in which concept dependencies are explicitly considered, leads
to good results.

In the experimentation, 30 single page documents were considered. Six trials were performed
by randomly selecting 20 documents for the training set and 10 for the test set. The training and
testing set for each of the six trials are given in FOCL format, along with a file that contains
information on all documents in FOIL format.

Initially, results on these datasets were published in a technical report [339], summaries of the
results appear in [194, 195, 494]. The integral document processing system is treated in detail in
[196].

3.4 ILP datasets for diagnosis, control, and modelling

The datasets described in this section originate from ILP applications related to dynamical systems,
their diagnosis, control, and modelling. These are: learning diagnostic rules from a qualitative
model of the power supply subsystem of a satellite, learning rules for transitions between flight
stages in a flight simulator, learning relational concepts from sensor data gathered by a mobile
robot, and learning qualitative models of dynamical systems from example behaviours.
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Application domain: Learning diagnostic rules for
a satellite power supply subsystem
Further specification: | dataset

Pointers: http://www.comlab.ox.ac.uk/oucl/groups/machlearn /satellite.html
Dataset size: 78 KB (tar, gzip)

Data format: GOLEM

References: [197]

Table 32: Satellite power supply subsystem data: dataset short description.

3.4.1 Learning diagnostic rules for a satellite power supply

One of the first practical applications of ILP was within the aerospace industry, namely the
diagnosis of power-supply failures in a communications satellite [197]. The satellite recharges its
batteries using solar energy. The charging system can be described through a qualitative model
consisting of 40 components and 29 sensors. As the satellite orbits the Earth, its position relative
to the Sun changes, driving its power-supply subsystem through four distinct stages: battery
charging, solstice, eclipse, and battery reconditioning. Qualitative simulation makes it possible to
predict the behaviour of the power supply in each of these stages. By provoking simulated faults
in the components, the simulation can generate examples of relations between a fault and the
supply’s behaviour. These examples form the present dataset, which served as an input to the ILP
program GOLEM.

GOLEM induced a set of rules for diagnosing power supply failures. In generating the exam-
ples, faults were provoked in all possible components, thus guaranteeing that the rules are complete
and correct for all single faults. Because the power-supply’s behaviour changes with time, the for-
malism used to describe the examples is based on temporal logic which proves to be suitable for
ILP learning.

3.4.2 Learning flight stage transition rules

Application domain: Learning flight stage transition rules

Further specification: | dataset

Pointers: http://www.gmd.de/ml-archive/general /data/stagedata/
Welcome.html

Dataset size: 160KB (tar, gzip)

Data format: PROGOL

References: [83], [350]

Table 33: Learning flight stage transition rules: dataset short description.

Data from behavioural traces of several human pilots flying an F-16 flight simulator have been
used to reverse engineer human flight skill [350]. In that experiment, the pilots followed a flight
plan, i.e., a sequence of flight stages: take-off, climb, leveling, straight and level flight, left turn,
align with runway, descent, landing. For each stage and for each aircraft control a decision tree was
induced. When using the induced controller as an auto-pilot the values for the aircraft controls are
obtained by interpreting the corresponding decision tree for that control and for that flight stage.
The transitions from stage to stage were done by means of hand-coded rules.

The task addressed here is to learn such stage transition rules from examples and background
knowledge. Eight different concepts have to be learned, corresponding to the preconditions for
take-off and the seven stage transitions. The ILP system INDLOG [83] was applied to these data.
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3.4.3 Learning relational concepts from sensor data of a mobile robot

Application domain: Learning relational concepts
from sensor data of a mobile robot
Further specification: | set of sensor datasets

Pointers: http://www-ai.informatik.uni-dortmund.de/
blearn/data-sets.html

Dataset size: 1.5MB (tar)

Data format: first order logic

References: [300], [299]

Table 34: Robot sensor datasets: short description.

This set of datasets was gathered during experiments with a real mobile robot described in
detail [300, 299]. Data have been collected with the goal to learn abstract operational concepts,
e.g., ‘the robot moves along a wall’, from sequences of sonar sensor measurements and robot actions.
Each dataset is represented in first order logic, where the following restrictions are applied: facts
can be linked using the argument “Time”, and there are never two different facts concerning the
same sensor and the same point in time.

Positive and negative examples are given through the sensor feature predicates structured
according to a general pattern sf(Tr,S_id,Start,End,Relor). Its intended interpretation is
“In a trace Tr, a specific sensor S_id percieved an object corresponding to the predicate’s name
sf. This happened during the time interval between Start and End while moving in a relative
orientation Rel_or along the object.”

FEach data set corresponds to learning disjoint concepts at one level. The levels are organized
in a hierarchy as shown below:

high-level concepts

I \
perception-integrating actions \
I I \
perceptual features | \
| I I \
sensorgroup features | \
/ I I \
/ sensor features | \
/ I I \
/ basic perceptual features | \
sclass, | basic-actions, \
dXsucc raw sensor data period-of-time—perceptions pdirections

Each node in the hierarchy denotes a set of predicates. The links are directed from the bottom
to the top. They link sets of predicates in lower nodes to a set of predicates in a higher node if
the predicates of the lower level are necessary to learn the concepts of the higher level. Hence, a
sequence of learning passes can learn high-level concepts from raw sensor data.

3.4.4 Learning qualitative models from example behaviors

The task here is to learn a QSIM type qualitative model of two connected containerns - a
dynamic system known as the U-tube. The target predicate legalstate/4 has as arguments the
qualitative values of the four system variables (water levels and their rates of change for each of the
two containers). The positive facts corresponding to this predicate describe the states that appear
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Application domain: Learning qualitative models from example behaviors
Further specification: | dataset

Pointers: http://www.gmd.de/ml-archive/ILP /public/data/utube/
Dataset size: 4 positive and 543 negative examples

Data format: Prolog (MFOIL format)

References: [322]

Table 35: Learning qualitative models from example behaviors: dataset short description.

in a qualitative behavior of the U-tube (4 facts). The negative facts (543) represent randomly
selected states that are impossible in such a system. The background knowledge defines the qual-
itative constraints of the QSIM formalism: add/3, multiply/3, deriv/2, m_plus/2, m minus/2,
and minus/2. A more detailed description of the data and the results of experiments with MFOIL
can be found in [322].

3.5 Chess datasets

Two datasets from the chess endgame White King and Rook vs. Black King (KRK) are described
here. The first concerns the problem of learning the concept of an illegal white-to-move position.
The second concerns the problem of learning the optimal depth to win in the same chess endgame.

3.5.1 Learning rules for illegal KRK positions

The data provided here concern the chess endgame KRK with three pieces left on the chess board:
White King, White Rook and Black King. The problem of learning rules for recognising illegal
positions when it is white’s turn to move (WTM) was first proposed by [400]. This has since
become a widely accepted test-bed for ILP systems.

The following information is used to learn the concept of illegal position. The examples are
represented by the predicate i11legal/6 specifying the column and row coordinates of White King,
White Rook and Black King, respectively; the data on ordering and adjacency of rows and columns
are provided as background knowledge.

Application domain: Learning rules for illegal positions

in the King and Rook vs. King chess endgame

Further specification: | set of datasets

Pointers: http://www.gmd.de/ml-archive/ILP /public/data/KRK/
Dataset size: A test set of 5000 examples and 5 sets of 100

examples each. Variants of the latter with three
different types and six different levels of noise.

Data format: Prolog

References: [162], [164], [322], [400]

Table 36: Learning illegal KRK positions: dataset short description.

The data in this data set originates from [400], where 5 sets of 100 examples and 5 sets of 1000
examples were used. The latter are now in one single file of 5000 examples named test.pl. To test
the performance on ILP systems in the presence of a controlled amount of noise, three different
types of noise were added to the smaller sets of examples at different noise levels: noise in arguments
(na), noise in class (nc) and noise in both arguments and class (nb). The directory contains
corresponding variants of the original data annotated by the originating set (1-5), the type (na,
nb, nc) and the noise level (00-80). Extensive experiments on the noisy datasets were performed
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with MFOIL, an ILP system based on FOIL, which includes techniques for handling imperfect
(noisy) data. A detailed description of the datasets here (e.g., how noise was introduced) as well
as the experiments on these datasets with FOIL [4] and MFOIL can be found in [162, 164, 322].

3.5.2 Learning rules for optimal depth to win in KRK

Application domain: Learning rules for optimal depth to win
in the King and Rook vs. King chess endgame
Further specification: | two datasets

Pointers: http://www.comlab.ox.ac.uk/oucl/groups/
machlearn/chess.html

Dataset size: 184 KB (tar, compress)

Data format: GOLEM

References: [32], [400]

Table 37: Learning rules for optimal depth to win in KRK: dataset short description.

A different dataset on learning illegal KRK positions is included in this distribution, used in
experiments with GOLEM. A training and a testing set of 10000 posititions each are given, as well
as the background knowledge.

Another, more difficult problem related to the same chess endgame is to do with predicting
optimal depth of win (that is, the number of moves to checkmate). In the data here, the exhaustive
database for the KRK domain acts as a source of example positions, each of which has associated
with it optimal depth of win information. Here this is represented by the predicate krk/7. The
arguments for this predicate stand for depth of win, and the coordinates of the three pieces on the
chess board.

The typical ILP task is to learn the sub-concept “black-to-move KRK position won optimally
for white in N moves”. Preliminary results of classifiers for “won in 0 moves” up to “won in
5 moves” can be found in [32]. The background knowledge consists of ground instances of the
predicates “symmetric difference” and “strictly less than”.

3.6 Sample datasets with ILP systems

This section reports on datasets that are distributed together with ILP systems with the aim to
demonstrate the functionalities of these systems. These are typically small datasets, often taken
from the literature or contrived by the authors of the systems themselves. Datasets that come
with LINUS [325], FORTE [460], SKIL1T [272], HAIKU [417] and WIM [449] are described.

3.6.1 LINUS

Application domain: LINUS

Further specification: | system, datasets and paper

Pointers: http://www.gmd.de/ml-archive/ILP /public/
software/linus/ (datasets and LINUS sources)
http://www.gmd.de/ml-archive/ILP /public/
papers/nonrec-learn.ps (paper)

Dataset size: small datasets
Data format: LINUS
References: [152], [325], [312], [349], [452]

Table 38: Short description of LINUS datasets.
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This distribution includes several small datasets adapted from the ML literature in a format
appropriate for LINUS [325, 312]. The problems include:

e learning family relationships [349] (file dhdbmoth.pl)

e learning the concept of an arch (file dhdbarch.pl)

¢ learning where trains are heading [349] (file dhdbeast.pl)

e learning rules governing card sequences in the game Eleusis [152] (files dhdbele[123m] .pl)

All the mentioned references point to the original sources of the data. FOIL [452] was applied to
all of these domains and the datasets were prepared starting from this paper, where descriptions of
the domains can be found. The results obtained from LINUS are described in detail in a Technical
Report [312] and summarized in the paper [325].

3.6.2 FORTE (First Order Revision of Theories from Examples)*

Application domain: FORTE (First Order Revision of Theories from Examples)*
Further specification: | system and datasets

Pointers: http://www.cs.utexas.edu /users/ml/forte.html
Dataset size: small datasets

Data format: FORTE format

References: [460]

Table 39: Short description of FORTE datasets.

The system FORTE (First Order Revision of Theories from Examples) has been described in
[460]. It is a machine learning system for modifying a first-order Horn-clause domain theory to fit
a set of training examples. FORTE uses a hill-climbing approach to revise theories, it identifies
possible errors in an input theory and calls on a library of operators to develop possible revisions.
These operators are constructed from methods such as propositional theory refinement, first-order
induction, and inverse resolution.

To illustrate the behaviour of FORTE several sample datasets are provided, such as the datasets
for learning family relationships, learning illegal positions in the KRK chess endgame and learning
a program to insert an element in a list after a given element.

3.6.3 SKILIT (Recursive Theories)

Application domain: SKILIT (Recursive Theories)

Further specification: | data + background knowledge

Pointers: http://www.up.pt/~amjorge/skil/index.html
Dataset size: small datasets

Data format: Prolog

References: [272], [77], [271]

Table 40: Short description of SKILIT datasets.

The system SKILIT described in [271] is designed to induce recursive theories from small
sets of positive examples using iterative bootstrapping. The system does not start from scratch
but searches for a program matching the input programming schema of the intended program.
Moreover, SKILIT offers means to specify both
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e some characteristics of the target predicate, e.g., its input/output mode and type declarations
¢ and integrity constraints.

Auxiliary predicates are provided in the background theory (environment files). The present
dataset includes training and testing data used for verification of the functionality of SKILIT when
inducing simple arithmetic and list processing concepts (e.g., sorting).

3.6.4 HAIKU

HAIKU

system and datasets
Fabien.Torre@Iri.fr
small datasets
Prolog

[417]

Application domain:
Further specification:
Pointers:

Dataset size:

Data format:

References:

Table 41: Short description of HAIKU datasets.

This dataset contains examples as well as background knowledge for three well-known concepts:
‘arch’, ‘cup’, and ‘tic-tac-toe’. The data have been used by the HAIKU system.

3.6.5 WIM

Application domain: WM

Further specification:

system and datasets

Pointers:

popel@fi.muni.cz

Dataset size:

small datasets

Data format:

Prolog

References:

[449], [448], [450]

Table 42: Short description of WIM datasets.

The data set contains the minimal example sets for learning basic list processing predicates
(member/2, append/3, reverse/2, split/3, delete/3, sublist/2 etc.), for the set operation
union/3 as well as for predicates that use Peano’s arithmetics ( plus/3, lessOrEqual/2,listLength/2,
extractNth/3) by the system WIM [449, 450].

For each target predicate, the example set contains the worst possible examples such that WiM
can learn the target predicate. For the current version of WiM ‘the worst possible examples’ have
to meet the following three requirements:

e an instance of each base clause has to appear in the example set (e.g., for the predicate
member/2 this may be member (a, [a,b])).

e positive examples are not on the same resolution chain (e.g., member (d, [c,d,e]) is enough
together with member (a, [a,b])) and

e at most one negative example is used (this negative example is generated by WIM itself).

Experiments with WIM to rebuild database schemata were described in [448]. In deductive
object-oriented databases both classes and attributes may be defined by rules. Example sets for
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learning subclasses (japaneseCar/1 as a subclass of car/1, isMother/1 as a subclass of person/1,
electricalVehicle/1 as a subclass of car/1 and publicTransportVehicle/1), superclasses
(factory/1, person/1) as well as example sets for learning classes of new objects (family/2)
and for learning a new attribute (personManagedBy/2) are included.

3.7 Miscellaneous datasets

Datasets on spatial layouts of Japanese houses, trains that head east or west, and topographic
descriptions of geographic objects.

3.7.1 Spatial layout of Japanese houses*

Application domain: Spatial layout of Japanese houses™
Further specification: | dataset
Pointers: ftp mizo01.ia.noda.sut.ac.jp/incoming/Floor_data.tar
Dataset size: 174 positive and 214 negative examples
1500 clauses of background knowledge
Data format: Prolog
References: [354]

Table 43: Spatial layout of Japanese houses: dataset short description.

The examples provide symbolic and numerical information about spatial layout of Japanese
houses, e.g., the position and size of different rooms, their spatial relations or the total size of
the house. There are two types of background knowledge — one of them allows to transform the
numerical information into a qualitative form. The goal is to induce rules in the form of constrained
clauses containing both symbolic and numerical information, e.g., “If the space X is in the interval
[Valuel,Value2], it is concluded with the likelihood P% that the living room is adjacent to the
dining room.” This dataset has been generated to test the GKS system [354], an ILP system for
induction of constraint logic programs.

3.7.2 East-West challenge*

Application domain: East-West Challenge”

Further specification: | datasets and results

Pointers: http://www.gmd.de/ml-archive/ILP /public/data/east_west/
Dataset size: 20/24/100 trains

Data format: Prolog

References: [351], [549]

Table 44: Short description of the East-West challenge data.

The problem of learning where trains are heading has been proposed by Michalski and Larson
in 1977: the task is to discover simple rules that distinguish Eastbound trains from those heading
in the opposite direction. An example of such a rule is it “If a train has a long closed car with
more than one load, then it is heading west.” This problem has numerous variants depending on
the initial description of the considered examples. Several variants have been presented by [351] as
a challenge to the international computing community in the form of a competition with deadline
early in 1995.

This entry has 3 parts:
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e The Challenge files describe the competition and contain all the material that was made
available to the competitors.

¢ The Results provide results of all the competitions, some comments on them and the winning
program.

e RL-ICET files describe an ILP solution by Peter Turney (full paper and the data prepro-
Cessor).

3.7.3 Geographic data

Application domain: Geographic data

Further specification: | dataset

Pointers: popel@fi.muni.cz

Dataset size: 100 positive examples

Data format: Prolog

References: unpublished data, contact popel@fi.muni.cz

Table 45: Short description of geographic data.

The dataset contains a topographic description of rivers, roads, railways as well as woods/forests
and buildings (one fact per object). Each object is decribed by its geometry in 2-dimensional
space, some additional characteristics are used when neccessary, e.g., for the roads and railways.
The example set is based on real-world topographic data, which have been modified to keep their
confidentiality. The applied modification maintains the essential geographical features of the orig-
inal data with clear geometrical interpretation (e.g., line intersections, the size of the considered
area etc.).

The provided dataset is intended for the induction of rules for identification of concepts like
bridge, forest in contrast to wood, railway station in contrast to a house nearby the railway etc.
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