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This paper is concerned with the use of Al techniques in ecology. More specifically, we
present a novel application of inductive logic programming (ILP) in the area of quantitative
structure-activity relationships (QSARs). The activity we want to predict is the biodegrad-
ability of chemical compounds in water. In particular, the target variable is the half-life for
aerobic aqueous biodegradation. Structural descriptions of chemicals in terms of atoms and
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bonds are derived from the chemicals’ SMILES encodings. The definition of substructures is
used as background knowledge. Predicting biodegradability is essentially a regression prob-
lem, but we also consider a discretized version of the target variable. We thus employ a num-
ber of relational classification and regression methods on the relational representation and
compare these to propositional methods applied to different propositionalizations of the
problem. We also experiment with a prediction technique that consists of merging upper
and lower bound predictions into one prediction. Some conclusions are drawn concerning
the applicability of machine learning systems and the merging technique in this domain
and the evaluation of hypotheses.

The persistence of chemicals in the environment (or to environmental influ-
ences) is welcome only until the time the chemicals fulfill their role. After that
time, or if they happen to be in the wrong place, the chemicals are considered
pollutants. In this phase of their life span, we wish that the chemicals would
disappear as soon as possible. The most ecologically acceptable (and a very
cost-effective) way of disappearing is the degradation of components that
are not considered pollutants (e.g., mineralization of organic compounds).
Degradation in the environment can take several forms, from physical path-
ways (erosion, photolysis, etc.), through chemical pathways (hydrolysis, oxy-
dation, diverse chemolises, etc.) to biological pathways (biolysis). Usually the
pathways are combined and interrelated, thus making degradation even more
complex. In our study, we focus on biodegradation in an aqueous environ-
ment under aerobic conditions, which affects the quality of surface and
ground water.

The problem of properly assessing the time needed for ultimate biodegra-
dation can be simplified to the problem of determining the half-life time of
that process. However, few measured data exist and often these data are
not taken under controlled conditions. It follows that an objective and com-
prehensive database on biolysis half-life times can not be found easily. The
best we were able to find was in a handbook of degradation rates (Howard
et al. 1991). The chemicals described in this handbook were used as the basis
of our study.

Usually, authors try to construct a QSAR (quantitative structure-activity
relationship) model/formula for only one class of chemicals, or congeners of
one chemical, e.g., phenols. This approach to QSAR model construction has
an implicit advantage that only the variation with respect to the class main-
stream should be identified and properly modeled. Contrary to the described
situation, our database comprises several families of chemicals, e.g., alcohols,
phenols, pesticides, chlorinated aliphatic and aromatic hydrocarbons, acids,
ketones, ethers, other diverse aromatic compounds, etc. From this point of
view, the construction of adequate QSAR models/formulae is a much more
difficult task.

We apply several machine learning methods, including several inductive
logic programming methods, to the above database in order to construct
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SAR/QSAR models for biodegradability. This application is discussed both
from the biochemical and the machine learning viewpoint.

GOALS OF THIS PAPER

From the biochemical point of view, the main point of this article is to
illustrate the applicability of machine learning in general and inductive logic
programming in particular in the context of biodegradability.

From the machine learning point of view, this paper is a case study in
which we consider several machine learning methods and approaches in
the specific context of biodegradability prediction. We classify machine learn-
ing methods along several dimensions and study the effect of these dimen-
sions on the performance of systems in this domain.

More specifically, we are looking for an answer to the following ques-
tions.

e How does the use of different representations for the data influence the
performance of machine learning systems?

e Prediction problems like this one are essentially numerical, but can be
stated as a classification problem. To what extent is it advantageous to
use a direct regression approach instead of an indirect classification
approach (as defined and explained below)?

e How do different machine learning methods (rule set induction, decision
tree induction, and statistical approaches) compare?

Concerning the data representation, the main issue we want to investigate
is to what extent the greater representational power of inductive logic pro-
gramming is advantageous in this domain. We distinguish three different
kinds of representation:

e A propositional representation, where each molecule is described by stat-
ing some properties of the molecule as a whole that domain experts expect
to be relevant.

e A representation where molecules are described by a fixed list of attributes,
and these attributes themselves are generated automatically using some
kind of feature construction (which may be of a trivial nature). In this
paper, we will refer to this representation as the propositionalized represen-
tation because the feature construction is essentially obtained by generat-
ing certain kinds of queries that an ILP system would typically generate
and storing the results of these queries as attributes of the examples. Note
that when following this approach, the representation issue is decoupled
from the induction issue. ILP is used to generate a good propositional
representation, but from then on only propositional techniques are used.
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An obvious question arising is whether this decoupling harms predictive
performance, as compared with a full ILP approach.

e A relational representation, where molecules are described by listing all
atoms and bonds in the molecule with their properties and the relation-
ships between them (i.e., which atoms participate in which bonds). Some
information about substructures (benzene rings, etc.) is also represented
in this manner.

The second issue is that of using regression versus classification methods.
A regression method directly predicts the target value (which is numerical),
whereas a classification method predicts a class derived from the target value.
Clearly, if the goal of the prediction is to accurately predict the half-life time
itself, then classification is not of any use; however, in the context of biode-
gradability, it is not so important to know exactly how fast a chemical will
degrade, but rather whether it will degrade within a reasonable time span.
In this context, classification does make sense, while regression methods
are still applicable as well. Thus the question arises: Is there any advantage
in using regression methods instead of classification methods? Will the more
precise information on half-life times that regression systems automatically
use help them to provide better classification?

The third issue is to what extent the machine learning paradigm to which
the system belongs matters. In this respect, we compare rule-based systems,
tree-based systems, and systems that are directly based on statistics (linear
regression, logistic regression, naive Bayes).

DATA SET

The database used was derived from the data in the handbook of degra-
dation rates (Howard et al. 1991). The authors have compiled the degrada-
tion rates for 342 widely used (commercial) chemicals from the available
literature. Where no measured data on degradation rates were available, ex-
pert estimations were provided. The main source of data employed was the
Syracuse Research Corporation’s (SRC) Environmental Fate Data Base
(EFDB), which in turn used as primary sources of information DATALOG,
CHEMPFATE, BIOLOG, and BIODEG files to search for pertinent data.

For each considered chemical, the book contains degradation rates in the
form of a range of half-life times (low and high estimate) for overall, biotic,
and abiotic degradation in four environmental compartments, i.e., soil, air,
surface water, and ground water. We focus on surface water here. The overall
degradation half-life is a combination of several (potentially) present path-
ways, e.g., surface water photolysis, photooxydation, hydrolysis, and biolysis
(biodegradation). These can occur simultaneously and have even synergetic
effects, resulting in a half-life time (HLT) smaller than the HLT for each
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of the basic pathways. We focus on biodegradation here, which was
considered to run in unacclimated aqueous conditions, where biota (living
organisms) are not adapted to the specific pollutant considered. For bio-
degradation, three environmental conditions were considered: aerobic,
anaerobic, and removal in waste water treatment plants (WWTP). In our
study, we focus on aqueous biodegradation HLT’s in aerobic conditions.

The HLT’s in the original database of Howard et al. (1991) are given in
hours, days, weeks, and years. In our database, we represented them in
hours. We took the arithmetic mean of the low and high estimate of the
HLT for aqueous biodegradation in aerobic conditions: The natural logar-
ithm of this mean was the target variable for machine learning systems that
perform regression. In additional experiments, we have also used the natural
logarithm of the upper and lower bounds themselves as target variable (see
experimental section).

A discretized version of the arithmetic mean was also considered in order
to enable us to apply classification systems to the problem. Originally
(Dzeroski et al. 1999) four classes were defined: chemicals degrade fast (mean
estimate HLT is up to seven days), moderately fast (one to four weeks), slowly
(one to six months), or are resistant (otherwise). In the experiments described
here, we further abstract from these four classes and define a two-class prob-
lem. More precisely, a compound is considered to degrade if its class is fast or
moderate; otherwise, it is considered resistant.

From this point on, we proceeded as follows. The CAS (Chemical
Abstracts Service) registry number of each chemical was used to obtain the
SMILES (Weininger 1988) notation for the chemical. In this fashion, the
SMILES notations for 328 of the 342 chemicals were obtained.

The SMILES notation contains information on the two-dimensional
structure of a chemical. So, an atom-bond representation, similar to the rep-
resentation used in experiments to predict mutagenicity (Srinivasan et al.
1996), can be generated from a SMILES encoding of a chemical. A
DCG-based translator that does this has been written by Michael De
Groeve and is maintained by Bernhard Pfahringer. We used this translator
to generate atom-bond relational representations for each of the 328 chemi-
cals. Note that the atom-bond representation here is less powerful than the
QUANTA-derived representation, which includes atom charges, atom types,
and a richer selection of bond types. The types especially carry a lot of in-
formation on the substructures of which the respective atoms/bonds are a
part.

A global feature of each chemical is its molecular weight. This was in-
cluded in the data. Another global feature is logP, the logarithm of the com-
pound’s octanol/water partition coefficient, used also in the mutagenicity
application. This feature is a measure of hydrophobicity, and can be expected
to be important since we are considering biodegradation in water.
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The basic atom and bond relations were then used to define a number of
background predicates defining substructures/functional groups that are
possibly relevant to the problem of predicting biodegradability. These predi-
cates are: nitro (—NO,), sulfo (—SO, or —0—S—0,), methyl (—CHj),
methoxy (—O-CHj), amine, aldehyde, ketone, ether, sulfide, alcohol,
phenol, carboxylic_acid, ester, amide, imine, alkyl_halide (R-Halogen where
R is not part of a reasonant ring), ar_halide (R-Halogen where R is part of a
resonant ring), epoxy, n2n (—N = N—), ¢2n (—C = N—), benzene (resonant
Cs ring), hetero_ar_6_ring (resonant 6 ring containing at least 1 non-C
atom), non_ar_6¢_ring (non-resonant Cy ring), non_ar_hetero_6_ring (non-
resonant six ring containing at least one non-C atom), six_ring (any type
of six ring), carbon_5_ar_ring (resonant Cs ring), non_ar_5c_ring (non-res-
onant Cs ring), non_ar_hetero_5_ring (non-resonant five ring containing at
least one non-C atom), and five_ring (any type of five ring). Each of these
predicates has three arguments: MoleculeID, MemberList (list of atoms that
are part of the functional group), and ConnectedList (list of atoms connected
to atoms in MemberList, but not in MemberList themselves).

EXPERIMENTS
Goals

We previously discussed the goals of this study; the experiments will, of
course, reflect these. More specifically, our experiments are set up in order to
enable a comparison between different machine learning systems, between dif-
ferent problem representations, and between classification and regression, as
well as an assessment of the usefulness of machine learning methods in the
domain of biodegradability.

The experimental setup should be such that results are maximally in-
formative with respect to the above questions. We now describe this setup
in more detail.

Representations

We distinguish four different constituents of the data representations,
which we refer to as Global, PI1, P2, and R.

e Global contains global descriptors of molecules that experts assume to be
relevant. In our experiments, we used the molecular weight (mweight)
and the logarithm of the octanol/water partition coefficient of the molecule
(logP).

e P contains counts of the substructures and functional groups listed at the
end of the previous section.
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e P2 contains counts of automatically generated small substructures (all con-
nected substructures of two or three atoms, and those of four atoms that
have a star-topology).

e R contains a description of the whole molecular structure: atoms, bonds,
and the substructures from P/ (not only their counts, but more precisely
described by listing the atoms occurring in them and the atoms through
which they are attached to the rest of the molecule).

Note that P/ and P2 are human-defined propositionalizations, i.e., a hu-
man expert defined which substructures could be of interest, then these sub-
structures were found in the compounds using a relatively simple algorithm.
We have not experimented with discovery-based propositionalization meth-
ods such as Warmr (Dehaspe and Toivonen 1999), although this would be
worthwhile to investigate in further work.

By considering all possible combinations of these chunks of background
knowledge, a lattice of different representations is obtained (partially ordered
by the contains less information than relation), as shown in Figure 1. Starting
from Global, where no relational information is used at all, one can add
chunks of relational information (or information derived from relational in-
formation) one by one, finally obtaining the most informative background
Global+ P1+ P2+ R.

Language Bias of Machine Learning Systems

Most ILP systems use a declarative language bias specification to decide
how to make use of certain information. For propositional systems, this
is much less the case, because in the attribute-value formalism, the way
information is used is very much standardized (comparison of attributes with
constants). Therefore, while the above lattice of background information

Global

—— T

Global+P1 Global+P2 Global+R

]

Global+P1+P2 Global+P1+R Global+P2+R

Global+P1+P2+R
FIGURE 1 A lattice of background information.
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is sufficient to guarantee that propositional systems will use the same
information (and hence can be accurately compared in this respect), for
ILP systems it is also necessary to describe their language bias, that is, exactly
what information they use and how they use it.

The fact that ILP systems use different bias specification languages
slightly complicates this: How does a bias specification for one system com-
pare to that of another? We have decided to use the following approach: The
language bias is specified as precisely as possible in a natural language, then
the users of the different ILP systems write a language specification that con-
forms to this informal specification. This approach turned out to work quite
well.!

The bias specifications used for the ILP systems are as follows:

e Global: Allow inequality comparisons of molecular weight or logP value
with constants generated using the discretization procedure of the system.
The number of discretization thresholds was chosen to be eight.

e P1: Allow equality and greater than tests for the number of times a specific
substructure occurs in the compound. When in combination with R, make
sure also to introduce the list of atoms through which the substructure is
connected to the rest of the compound. (These atoms can possibly later
be used in other tests).

o P2: Allow equality and greater than tests for the number of times a specific
substructure occurs in the compound.

e R: Allow the following tests, in which specific means that a constant
should be filled in here and some means that an existentially quantified
variable is to be filled in:

whether a specific element occurs in the compound;

whether a given atom is of a specific element type;

whether a specific bond occurs in the compound;

whether a specific bond occurs between given atoms or between a given

atom and any other atom;

whether some bond occurs between given atoms;

e whether some or a specific bond between a given atom and a new atom of
some specific element occurs; and

e whether the list of atoms connecting a given substructure to the rest of the

compound contains a specific element.

Note that other types of test could be used by ILP systems as well, such as
testing whether two substructures touch. The above list of tests was chosen
based upon the certainty we had that a) the tests are meaningful to domain
experts and b) they can be accurately specified in the language bias specifi-
cation of the different systems.
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Systems

A variety of classification and regression systems were applied to the
classification and the regression version of the biodegradability problem.
Table 1 sorts them according to whether they can handle relational data or
not, whether they are tree-based, rule-based, or based more directly on stat-
istics, and whether they can handle regression or classification.

Propositional systems were applied to all propositional representations
(i.e., all combinations excluding R). For classification, these were the decision
tree inducer C4.5 (Quinlan 1993b), its rule generating add-on C4.5rules
(Quinlan 1993b), logistic regression, and a naive Bayesian classifier. For
regression, linear regression was used as well as the regression-tree induction
program M5 (Wang and Witten 1997) and a reimplementation of M5
(Quinlan 1993a). M5’ constructs linear models in the leaves of the tree.

Relational learning systems applied include ICL (De Raedt and Van Laer
1995), which induces classification rules, S-CART (Kramer 1996, 1999), and
TILDE (Blockeel and De Raedt 1998). The latter are capable of inducing
both classification and regression trees. ICL is an upgrade of CN2 (Clark
and Boswell 1991) to first-order logic, TILDE is an upgrade of C4.5, and
S-CART is an upgrade of CART (Breiman et al. 1984). TILDE cannot con-
struct linear models in the leaves of its trees; S-CART can.

Regarding parameter settings, default settings were employed for all sys-
tems except for S-CART and Tilde where the stopping criterion of tree induc-
tion was adapted manually based on experience with earlier experiments (in
the case of S-CART to generate larger trees; in the case of Tilde to generate
smaller trees [F-test at 0.05]). Besides language bias, no parameter settings
were varied throughout the experiments described here.

Design of Experiments

Two different induction tasks were considered in these experiments:

e Classification into degradable and resistant.
e Prediction of the mean HLT estimated by the experts.

TABLE 1 Systems Used in Experiments, Classified Along Three Dimensions

Tree-based Rule-based Statistical
classification prop. C4.5 C4.5rules log. regr., NB
rel. S-CART, Tilde ICL
regression prop. M5 linear regression

rel. S-CART, Tilde
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The experiments were designed orthogonally with respect to systems,
backgrounds, induction tasks, and train/test-partitionings. More specifically,
for each system, a tenfold cross-validation was run for each different back-
ground in the lattice where it was applicable, for each induction task for
which it was applicable, and on each of five different 10-fold partitionings
of the data. This orthogonality provides maximal flexibility with respect to
the statistical tests that can be performed (e.g., as the same train/test sets
are used it is possible to perform paired comparisons between the systems).

Evaluation Criteria

We evaluated the predictive models that were induced according to the
following criteria. For classification, accuracy (number of correct predictions
divided by total number of predictions) was used. For regression systems,
both the Pearson correlation coefficient (between predictions and actual
values) and the root mean squared error (RMSE) were computed.

In order to be able to compare regression systems with classification sys-
tems, an ROC (Receiver Operating Characteristics) analysis (Provost and
Fawcett 1998) was performed. This ROC analysis is one of the reasons
why the classification task was stated as a two-class problem, instead of
the four-class problem considered in earlier work (Dzeroski et al. 1999).
The two-class classification is also frequently found in the literature and,
from the domain expert’s point of view, it is equally useful.

Comparison Tests

Classifiers were compared using McNemar’s test for changes: For each
individual instance, the prediction of classifiers A and B is compared to
the real class of the instance; the number of times A is better than B is
counted and compared with the number of times B is better than A. Under
the null hypothesis that both classifiers are equally good, both number
should be approximately equal. Precise statistical tests are available to test
whether a deviation from this situation is significant.

Regression systems were compared using the sign test: For each instance,
an algorithm scored a point if its prediction was closer to the target than that
of another algorithm. Again, under a null hypothesis of both systems being
equally good, both systems should score approximately the same.

In the presence of so many tests, it is not uncommon to apply Bonferroni
adjustment to the significance levels. We are not doing this here because
Bonferroni adjustment only makes sense when the different tests that are
performed are independent, which is not the case here. As Dietterich
(1998) argues, statistical tests, when used as we do here, are always to be
interpreted as somewhat heuristic indications of differences in performance
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levels, and we could not see good arguments to apply Bonferroni adjustment
in this context. We do use a significance level of 0.01 for all tests.

RESULTS OF EXPERIMENTS

We now describe the experiments we have performed. There are two
batches of experiments. In the first batch, a straightforward approach to
classification and regression was followed. In an attempt to improve the qual-
ity of the produced models, we have run a second batch of experiments, using
a novel approach that combines predictions for lower and upper bounds into
an overall numerical prediction.

First Batch: Classification and Regression

In the first batch of experiments, systems were trained directly from the
target values that should be predicted, i.e., since we want to predict the class
or HLT of compounds, those attributes are considered target values for the
learners.

In Table 2, classification accuracies are given for different systems. The
results are shown in a lattice, in order to make it easier to compare a) per-
formance of a particular system with different kinds of background knowl-
edge, b) the performance of different systems under the same background
knowledge, and c) the influence of a particular chunk of background knowl-
edge on the average performance of all systems. The same is done for
regression systems: Correlation coefficients are shown in Table 3 and RMSEs
are shown in Table 4.

In this section of the text we just mention some observations; a discussion
of what they might mean follows later.

e Observation 1: Compared with the very restricted set of global attributes,
any extension of the background knowledge (whether it is P1, P2, or R)
yields a significant improvement in performance. After this initial boost,
however, adding more information does not improve performance any
further.

e Observation 2: Comparing the increase in performance that P1, P2, and R
individually generate when added to Global reveals no significant differ-
ences between them (i.e., none of them significantly outperforms any other;
they all outperform Global though).

Statistical tests were performed to compare the performance of different
systems with the same background knowledge, and different sets of
background knowledge for the same system. No significant results were
consistently obtained.? The strongest result we obtained was that logistic
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TABLE 2 Classification Accuracies for Different Systems and Different Background Knowledge (Mean
and Standard Deviation Over 5 10-fold Cross-Validations)

Global

System Mean (Dev)

ICL 0.663 (0.008)

Tilde 0.666 (0.013)

S-CART 0.633 (0.009)

C4.5 0.605 (0.025)

C4.5rules 0.604 (0.021)

N.Bayes 0.655 (0.009)

Log.Reg. 0.648 (0.005)

Global 4 P1 Global 4+ P2 Global + R

System Mean (Dev) System Mean (Dev) System Mean (Dev)
ICL 0.718 (0.019) ICL 0.729 (0.015) ICL 0.748 (0.009)
Tilde 0.709 (0.017) Tilde 0.726 (0.015) Tilde 0.736 (0.011)
S-CART 0.716 (0.012) S-CART 0.722 (0.011) S-CART 0.726 (0.013)
C4.5 0.750 (0.013) C4.5 0.722 (0.016)
C4.5rules 0.738 (0.016) C4.5rules 0.739 (0.020)
N.Bayes 0.720 (0.010) N.Bayes 0.725 (0.004)
Log.Reg. 0.752 (0.012) Log.Reg. 0.784 (0.008)

Global 4+ P14 P2 Global+P1 +R Global+P2+R
System Mean (Dev) System Mean (Dev) System Mean (Dev)
ICL 0.723 (0.018) ICL 0.732 (0.006) ICL 0.726 (0.020)
Tilde 0.723 (0.023) Tilde 0.741 (0.013) Tilde 0.729 (0.014)
S-CART 0.722 (0.004) S-CART 0.719 (0.009) S-CART 0.712 (0.017)
C4.5 0.762 (0.023)

C4.5rules 0.730 (0.015)
N.Bayes 0.730 (0.007)
Log.Reg. 0.748 (0.025)

Global+P1 +P2+R

System Mean (Dev)
ICL 0.715 (0.020)
Tilde 0.729 (0.011)
S-CART 0.713 (0.023)

regression with background P2 almost consistently (four out of five partition-
ings) performs significantly better than several (not all) other systems. This is
still a relatively weak conclusion, and the fact that a similar result is not
obtained for P1 4 P2 raises the suspicion that this result may be accidental.

To compare the regression and classification approaches, we have per-
formed an ROC analysis (Provost and Fawcett 1998). In brief, ROC analysis
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TABLE 3 Pearson Correlations for Regression
In roman: results of batch 1; italic: results of batch 2
Global
System Mean (Dev)
Tilde 0.487 (0.020)
0.495 (0.015)
S-CART 0.476 (0.031)
0.478 (0.016)
M5 0.503 (0.012)
0.502 (0.014)
Lin.reg. 0.436 (0.004)
0.437 (0.005)
Global +P1 Global 4 P2 Global + R
System Mean (Dev) System Mean (Dev) System Mean (Dev)
Tilde 0.596 (0.029) Tilde 0.615 (0.014) Tilde 0.616 (0.021)
0.612 (0.022) 0.619 (0.021) 0.635 (0.018)
S-CART 0.563 (0.010) S-CART 0.595 (0.032) S-CART 0.605 (0.023)
0.581 (0.015) 0.636 (0.015) 0.659 (0.019)
M5 0.579 (0.024) M5 0.646 (0.013)
0.592 (0.013) 0.646 (0.014)
Lin.reg. 0.592 (0.014) Lin.Reg. 0.443 (0.026)
0.592 (0.013) 0.455 (0.022)

Global +P1+P2 Global+P1+R Global+P2+R
System Mean (Dev) System Mean (Dev) System Mean (Dev)
Tilde 0.603 (0.023) Tilde 0.622 (0.022) Tilde 0.594 (0.019)

0.624 (0.022) 0.646 (0.017) 0.621 (0.022)
S-CART 0.593 (0.021) S-CART 0.606 (0.015) S-CART 0.599 (0.028)

0.624 (0.014) 0.630 (0.013) 0.640 (0.026)
M5 0.655 (0.014)

0.663 (0.011)
Lin.reg. 0.563 (0.023)

0.575 (0.024)

Global+P1 +P2+R

System Mean (Dev)
Tilde 0.595 (0.020)

0.618 (0.022)
S-CART 0.606 (0.032)

0.631 (0.026)

distinguishes two types of errors: predicting a negative as positive and pre-
dicting a positive as negative. Classifiers are thus evaluated in two dimen-
sions: FP reflects the false positive rate (proportion of negatives predicted
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TABLE 4 Root Mean Squared Errors for Regression
In roman: results of batch 1; italic: results of batch 2

Global
System Mean (Dev)
Tilde 1.380 (0.022)
1.370 (0.017)
S-CART 1.398 (0.032)
1.388 (0.018)
M5 1.355 (0.011)
1.356 (0.013)
Lin.Reg. 1.412 (0.004)
1.411 (0.004)
Global +P1 Global + P2 Global + R
System Mean (Dev) System Mean (Dev) System Mean (Dev)
Tilde 1.285 (0.041) Tilde 1.283 (0.026) Tilde 1.265 (0.033)
1.260 (0.030) 1.270 (0.034) 1.231 (0.025)
S-CART 1.342 (0.013) S-CART 1.315 (0.048) S-CART 1.290 (0.038)
1.313 (0.021) 1.240 (0.022) 1.198 (0.034)
M5 1.294 (0.036) M5 1.204 (0.019)
1.272 (0.019) 1.201 (0.020)
Lin.Reg. 1.276 (0.019) Lin.Reg. 1.556 (0.053)
1.274 (0.017) 1.530 (0.040)

Global 4+ P1+ P2 Global+P1+R Global+P2+R
System Mean (Dev) System Mean (Dev) System Mean (Dev)
Tilde 1.315 (0.041) Tilde 1.265 (0.034) Tilde 1.324 (0.033)

1.275 (0.032) 1.222 (0.026) 1.270 (0.034)
S-CART 1.327 (0.036) S-CART 1.294 (0.032) S-CART 1.309 (0.044)
1.265 (0.023) 1.249 (0.018) 1.235 (0.042)
M5 1.191 (0.023)
1.177 (0.017)
Lin.Reg. 1.411 (0.040)
1.390 (0.042)
Global +P1+P2+R
System Mean (Dev)
Tilde 1.335 (0.036)
1.283 (0.034)
S-CART 1.301 (0.049)

1.253 (0.042)

positive) and TP reflects the true positive rate (proportion of positives pre-
dicted positive). The ideal case is FP = 0 and TP = 1. A classifier is repre-
sented by one (FP, TP) point in an ROC diagram. Points to the upper left
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are strictly better; points to the upper right or lower left may be better or not
depending on the costs assigned to each type of error.

Numerical predictors can be turned into classifiers by choosing a thresh-
old (a prediction above this threshold counts as positive). By varying the
threshold, the classifier can be tuned towards higher TP or lower FP. Thus
a regression model typically gives rise to a curve in the ROC diagram.

In our ROC analysis the positive class is degradable (hence true positives
are degradable instances predicted degradable; false positives are resistant
instances predicted degradable).

Figure 2 compares ROC curves and points for all classification and re-
gression systems for backgrounds Global and P1 -+ P2. Figure 3 compares
ROC curves for relational learners, backgrounds R, and P1 + P2+ R. The
curves shown were obtained for one single partitioning (the first one). Curves
for other partitionings were similar, though not exactly the same (e.g., this
curve suggests that S-CART performs slightly better on regression than
Tilde, and slightly worse for classification, but this is not consistently the case
for other partitionings).

e Observation 3: No large differences between regression and classification
are noticeable in general, although the best regression systems do beat
the best classification systems.

e Observation 4: At first sight, the ROC curves seem contradictory to the
results in Tables 3 and 4. Note that the linear regression ROC curve is
the best one on the P1+ P2 diagram (this was also the case for other
partitionings), while according to the tables, linear regression seems to
perform worse than the other systems. Even though it did not consistently
perform significantly worse than other systems, on partitioning one
(depicted in the ROC diagram), linear regression performed significantly
worse than S-CART, according to our statistical tests. This is absolutely
unsupported by the ROC diagram.

Discussion

With respect to comparisons between different systems and data repre-
sentations, the results of our first batch of experiments are mainly negative:
We have not been able to show a clear difference in performance between the
different systems, or between the different backgrounds (except for the Glo-
bal background, which clearly contains too little information to make good
predictions possible).

The background R contains relational information, whereas P1 and P2
are propositionalizations of relational information. The lack of significant
differences between backgrounds suggests that each of these backgrounds
in itself provides a sufficiently complete description of a compound from
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FIGURE 2 ROC curves comparing classification and regression systems: a) for background Global; b) for
background P1 + P2. The horizontal axis represents the number of false positives, the vertical axis the
number of true positives.
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FIGURE 3 ROC curves comparing relational classification and regression systems: a) for background R;
b) for background P1 + P2 + R. The horizontal axis represents the number of false positives, the vertical
axis the number of true positives.
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the viewpoint of predicting its degradability. Adding more information (by
combining backgrounds) does not improve performance.

The difference between ROC curves and correlations or RMSEs is inter-
esting. It can be explained from the observation that ROC curves essentially
evaluate predictions from a classification point of view: If a hypothesis makes
a large error in the numerical sense but this does not cause the instance to be
misclassified, then the large error will decrease the correlation coefficient (in-
crease the RMSE), but on the ROC curves this will not have a negative effect.
One consequence of this is that outliers have a much more disturbing effect
on the correlation/RMSE scores than on the ROC curves. For instance, in
one case (for background Pl + P2), we found that removing three outliers
reduced the RMSE of linear regression from 1.45 to 1.22, which immediately
brought linear regression at the same level as M5 (better than other systems).

Figure 4 compares predictions of linear regression and Tilde. The hori-
zontal axis represents actual values, and the vertical axis represents predic-
tions. It is clear from this figure what is happening: While both learners
make predictions that are clearly correlated with the actual values, Tilde is
in a sense more cautious. All its predictions are relatively close to the center.
Linear regression predicts more extreme values, and extreme values have a
large influence on both correlation and RMSE, which in this case causes
linear regression to score very badly on these evaluation measures. For
ROC curves, these extreme predictions do not hurt at all.

Our conclusion here is that one should be careful when choosing an
evaluation criterion, and preferably not rely on a single one. The use of cor-
relations and RMSE:s to evaluate predictions is most appropriate when accu-
rate numerical predictions are important, which may not always be the case.
For example, in the biodegradability domain, a precise numerical prediction
may not be that important, one is mainly interested in the area in which a
compound lies (this is especially true in our case, where target values are

e

2 4 6 ; IIO 12 2 ; ; ; V‘O 12
FIGURE 4 Predictions made by linear regression (left) and Tilde (right) in function of actual value, for the
P1 + P2 background.
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expert estimates and not measured values). Another point is that criteria may
be very sensitive to outliers, as demonstrated here for correlation and RMSE.

Second Batch: Prediction of Intervals

After the first batch of experiments had been run, and noticing that com-
bining information from different chunks of background knowledge does not
improve performance, the question arised whether and how these results
could be improved. Combining the hypotheses from different systems did
not improve performance. A technique that did improve performance is
the following one.

The HLTs, which formed our target values, are actually derived from up-
per and lower bound estimates by domain experts (we just took the arithme-
tic mean). An alternative way of predicting them is to build predictive models
for these upper and lower bounds, and then build a predictive model for the
mean that just predicts the mean of the upper and lower bound predictions.?

Except for the fact that with this approach more information is obtained
(prediction of upper and lower bounds as well as the mean), the approach
actually turns out to consistently yield equal or better performances, as can
be seen in Tables 3 and 4, where the results of this batch of experiments is
shown in italics. The results on ROC curves in general are also positive,
though differences are quite small here.

That prediction of upper and lower bounds yields better results is not too
surprising. Given that the original target value is derived from two other
values, it seems reasonable to assume that there is a stronger relationship be-
tween these values and the structure of a compound, than between the mean
of these two and the compound’s structure.

Interpretation of Hypotheses

Next to predictive accuracy, comprehensibility of a hypothesis for do-
main experts is also important. We sent some of the produced hypotheses
to our domain expert B. Kompare, who commented on them. Figure 5 shows
a typical tree produced by Tilde together with some comments by the expert.
An interpretation in plain English of the first leaf (labeled “‘very evident”),
for instance, would be: “If the molecule’s logP value is at least 4.84 and it
contains a chlorine atom, then the molecule is resistant.” The second leaf
on which the expert commented can be described as containing molecules
with a logP value between 1.67 and 4.84 that contain chlorine, benzene,
and an R-Halogen where R is part of a resonant ring, but no non-resonant
Cs ring or methyl. There are 14 such molecules in the data set, of which 13
are resistant. The expert’s comments suggest that of all these conditions,
the benzene condition is the most relevant one.
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activ_2(4,B)
LogP(A,C), C >= 1.67 7
+--yes:atm(A,D,cl,E,F) 7
| +-~yes:1logP(A,G), G >= 4.84 7
| +--yes: [resistant] [16 / 16] ... very evident, OK, high logP ==> resistant
| +--no: mnon_ar_5c_ring(4,I1,J) ?
| +-~yes: [degrades] [2 / 2]
| +--no: benzene(A,L,M) 7
I +~~yes:ar_halide(4,N,0) ?
| | +--yes:methyl(A,P,Q) 7
| | | +-~yes: [degrades] [3 / 4]
| { | +--no: [resistant] [13 / 14] ... , Ok, benzenes are resistant
| | +~-no: [degrades] [4 / 4]
| +--no: [resistant] [28 / 31]
+--no: logP(A,V), V >= 4.84 7
+-~yes:ester(4,W,X) ?
| +--yes: [degrades] [5 / 5]

| +--no: atm(A,Z,n,A_1,B_1) ?

| +--yes:amine(A,C_1,D_1) 7

| | +--yes: [resistant] [2 / 2]

| i +--no: [degrades] [2 / 2]

| +--no: [resistant] [16 / 15] ... looks 0K, i.e. other slowly degradable

+--no: mweight(A,H_1), H_1 >= 110.971 7
+-~yes:n2n(A,I_1,J.1) ?
| +--yes: [degrades] [3 / 3]
+--no: ester(A,L_1,M_1) ?
+--yes: [degrades] [7 / 8]
+--no: methoxy(4,0_1,P_1) ?
+--yes:[resistant] [3 / 3]
+--no: methyl(A,R_1,S_1) ?
+--yes:atm(A,T_1,n,U_1,V_1) ?
| +--yes:atm(A,W_1,0,X_1,Y. 1) 7
| | +--yes:sbond(A,T_1,Z_1,A_2), atm(A,Z_1,h,B_2,C_2) ?
| | | +--yes:[degrades] [3 / 4]
| | | +--no: [resistant] [7 / 9]
| | +--no: [resistant] [3 / 3]
|
+

+--no: [degrades] [6 / 8]
--no: atm(4,F_2,0,G_2,H.2) ? ... -0- is easy place to attack
+--yes: [degrades] [13 / 15] ... logical

+--no: five_ring(4,1_2,J.2) 7
+--yes: [resistant] [3 / 3]
+--no: six_ring(4,L_2,M_2) ?
+--yes: [degrades] [9 / 12] ... ? cannot check
| +--no: [resistant] [2 / 21
+--no: [degrades] [12 / 13] ... Ok, pretty obvious 1.67<logP<4.84 and molW<1i1
--no: atm(A,P_2,n,Q_2,R_2) 7
+--yes:sbond(4,P_2,5_2,T_2), atm(4,5.2,0,U.2,V.2) ? 7?camnnot check! is this -S=0 group?

|
|
|
|
|
I
I
|
|
|
|
|
|
|
!
|
|
|
|
|
[
| ]
| |
| |
| |
| |
| |
| |
| i
i |
| |
| 1
1 |
| |
| |
| 1
| |
| 1
| |
|

|

+

| 4+--yes:[resistant] [14 / 18] ... identified exceptions - could not check!

| +--no: imine(4,W.2,X.2) ?

i +--yes:[resistant] [2 / 2] ... identified exceptions

| +--no: methoxy(A,Z_2,A_3) 7

i +--yes:[resistant] [2 / 2] ... identified exceptions

| +--no: [degrades] [30 / 33] ...0K

+--no: [degrades] [57 / 62] ... OK, pretty obvious, light orgamic of only C,H,(0), no N

FIGURE 5 Tilde classification tree, with comments added by expert.

The time needed by the expert to interpret the tree in Figure 5 was in the
order of half an hour. It is clear from the expert’s comments that some of the
expert’s knowledge is rediscovered by the tree and the expert can recognize
this in the tree; the expert can even link some tests to specific chemical
substructures. Also, the size of the tree is manageable.

Our conclusions from the expert’s comments are that a) the trees and
rules typically produced for this application are sufficiently interpretable,
and b) the expert had a preference for rules over trees, mainly because of
the possibility to interpret each rule separately; however, he added that
a nicely structured single-page presentation of a tree helps a lot in inter-
preting it.
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An interesting observation is also that ILP systems tend to produce rela-
tively small models, e.g., regression trees produced by S-CART and Tilde
typically contain around 50, respectively, 30 nodes, whereas trees produced
by M5’ contain around 300 nodes on the average. It is not completely clear
why this happens, as the smaller trees also occur for propositional data; it
seems to be a property of the systems rather than the approach (trees for a
relational background still tend to be slightly smaller than for a propositional
one, but this difference is much smaller). Obviously smaller theories are pre-
ferred by domain experts, if this can be achieved without loss of predictive
accuracy this is an advantage.

Comparison with the BIODEG Program

Howard and Meylan (1992) describe the BIODEG program for biode-
gradability prediction. This program estimates the probability of rapid aero-
bic biodegradation in the presence of mixed populations of environmental
organisms. It uses a model derived by linear regression (Howard et al.
1992). Here we compare our results with this program. It should be noted
that some of the compounds in our data set were used to train the BIODEG
program, so there is an overlap of training and test set, which puts BIODEG
at an advantage.

On our data set, the predictions of the BIODEG program have a corre-
lation of 0.607 with the actual values. Most of the correlations we have
obtained are considerably higher. In the light of the ‘“‘correlation vs. ROC”
discussion, this result should be interpreted with caution. Indeed, the
BIODEG ROC curve is better than the curves we obtain in most of our
experiments; however, it is worse than our own linear regression method
on the P1+ P2 background, as Figure 6 shows.*

The conclusion here is that whether accurate numerical predictions are
important or not (in other words, whether correlations and RMSEs are the
main evaluation criterion, or whether ROC curves are), in both cases we have
an approach that outperforms the BIODEG program.

RELATED WORK

The observation that propositional learners with a good propositional
description of compounds may perform as well as ILP is consistent with
Srinivasan and King’s work (Srinivasan and King 1997) on the use of ILP-
induced features in linear regression. The difference between their approach
and ours is that Srinivasan and King generate propositional features in a less
trivial way than we do; they use an ILP system to generate features deemed
relevant by the system, whereas we have used less sophisticated or more
human-controlled feature generators (e.g., just counting all substructures of
a certain kind, or counting all substructures considered relevant by chemists).
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FIGURE 6 ROC curve for BIODEG program, compared to ROC curve of linear regression on Pl + P2.
The horizontal axis represents the number of false positives, the vertical axis the number of true positives.

Our results suggest that, from the machine learning point of view, even such
trivial propositionalizations may work well.

Other related work includes QSAR applications of machine learning and
ILP, on one hand, and constructing QSAR models for biodegradability, on
the other hand. On the ILP side, QSAR applications include drug design
(King et al. 1992), mutagenicity prediction (Srinivasan et al. 1996), and tox-
icity prediction (Srinivasan et al. 1997). The latter two are closely related to
our application. In fact, we have used a similar representation and reused
parts of the background knowledge developed for them.

On the biodegradability side, the work by Howard et al. (1992) is
closest to our work. The BIODEG program for biodegradability prediction
(Howard and Meylan 1992) estimates the probability of rapid aerobic biode-
gradation in the presence of mixed populations of environmental organisms.
It uses a model derived by linear regression (Howard et al. 1992). The results
presented in this paper show that it is possible to improve upon these results,
whether correlations or ROC curves are used as the evaluation measure.

Work on applying machine learning to predict biodegradability includes a
comparison by Kompare (1995) of several Al tools on the same domain and
data; he found these to yield better results than the classical statistical and
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probabilistic approaches. Zitko (1991) and Cambon and Devillers (1993)
applied neural nets, and Gamberger et al. (1987) applied several approaches.

CONCLUSIONS

This paper presents a case study on the use of machine learning algorithms
for the prediction of biodegradability of chemical compounds. We have per-
formed experiments with a wide range of algorithms, for a variety of back-
ground information, using different approaches. Our main conclusions are:

e When evaluating systems based on their predictive accuracy, correlation,
or RMSE, it does not seem to matter very much which system is used;
all of them perform very similarly. Linear regression may seem to lag
somewhat behind, but this can be attributed to the sensitivity of RMSE
and correlation to outliers.

e Because regression trees make more cautions predictions (closer to the glo-
bal mean) than some other methods such as regression, a comparison
based on correlations or RMSEs puts them at an advantage. Correlations
should be interpreted with caution when used to compare different regression
approaches.

e ROC curves may give a very different impression than correlations or
RMSEs. In our case, ROC curves suggest that linear regression based
on automatically generated features works very well.

e Propositionalization of structural descriptions is a good alternative to the
direct use of relational background knowledge. It has the advantage that
more predictive modeling techniques are available for propositional
knowledge than for relational knowledge, cf. Srinivasan and King (1996).

e Indirect ways of building predictive models may be useful in obtaining bet-
ter performance. In our case, separate prediction of lower and upper
bounds (from which the mean is computed afterwards) turns out to yield
slightly better models than direct prediction of HLTs. The improvement
is especially noticeable when using a relational background.

The prediction of intervals is in itself an interesting research topic in
machine learning, even besides the fact that it may yield better predictions
of a mean value; in some application domains experts are more interested
in intervals than in point predictions. As such, this seems an interesting topic
for future research.

To conclude, we believe that this case study has pointed out some inter-
esting issues concerning the use of machine learning and statistical methods
for QSAR modeling, and also some more general issues concerning the
relationship between classification and regression approaches and ways to
evaluate them.
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NOTES

1. An alternate approach would have been to use a more formal common
declarative bias language; recent developments in this direction are
described by Knobbe et al. (2000).

2. Given the large number of comparisons, some significant results are
expected; we say that a difference is consistently significant if it is signifi-
cant for all five partitionings for which a cross-validation was performed.

3. More precisely, predictions on a logarithmic scale are first transformed
back to the original scale, then the mean is computed, then the logarithm
of this is taken.

4. Due to a few missing predictions for BIODEG, the curves do not end in
the same point; however, in the best case for BIODEG, when all missing
predictions would have been correct, its whole curve just shifts a bit
upwards but not enough to change the outcome of this comparison.
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