
Stacking with Multi-Response Model Trees

Sašo Džeroski and Bernard Ženko

Department of Intelligent Systems, Jožef Stefan Institute,
Jamova 39, 1000 Ljubljana, Slovenia,

Saso.Dzeroski@ijs.si, Bernard.Zenko@ijs.si

Abstract. We empirically evaluate several state-of-the-art methods for
constructing ensembles of classifiers with stacking and show that they
perform (at best) comparably to selecting the best classifier from the en-
semble by cross validation. We then propose a new method for stacking,
that uses multi-response model trees at the meta-level, and show that it
outperforms existing stacking approaches, as well as selecting the best
classifier from the ensemble by cross validation.

1 Introduction

An ensemble of classifiers is a set of classifiers whose individual predictions are
combined in some way (typically by voting) to classify new examples. One of the
most active areas of research in supervised learning has been to study methods
for constructing good ensembles of classifiers [3]. The attraction that this topic
exerts on machine learning researchers is based on the premise that ensembles
are often much more accurate than the individual classifiers that make them up.

Most of the research on classifier ensembles is concerned with generating en-
sembles by using a single learning algorithm [4], such as decision tree learning
or neural network training. Different classifiers are generated by manipulating
the training set (as done in boosting or bagging), manipulating the input fea-
tures, manipulating the output targets or injecting randomness in the learning
algorithm. The generated classifiers are then typically combined by voting or
weighted voting.

Another approach is to generate classifiers by applying different learning al-
gorithms (with heterogeneous model representations) to a single data set (see,
e.g., [9]). More complicated methods for combining classifiers are typically used
in this setting. Stacking [18] is often used to learn a combining method in addi-
tion to the ensemble of classifiers. Voting is then used as a baseline method for
combining classifiers against which the learned combiners are compared. Typi-
cally, much better performance is achieved by stacking as compared to voting.

The work presented in this paper is set in the stacking framework. We argue
that selecting the best of the classifiers in an ensemble generated by applying
different learning algorithms should be considered as a baseline to which the
stacking performance should be compared. Our empirical evaluation of several
recent stacking approaches shows that they perform comparably to the best of
the individual classifiers as selected by cross validation, but not better. We then

propose a new stacking method, based on classification by using model trees, and
show that this method does perform better than other combining approaches,
as well as better than selecting the best individual classifier.

Section 2 first summarizes the stacking framework, then surveys some re-
cent results and finally introduces our stacking approach based on classification
via model trees. The setup for the experimental comparison of several stacking
methods, voting and selecting the best classifier is described in Section 3. Section
4 presents and discusses the experimental results and Section 5 concludes.

2 Stacking with Model Trees

We first give a brief introduction to the stacking framework, introduced by [18].
We then summarize the results of several recent studies in stacking [9, 13, 14, 12,
15]. Motivated by these, we introduce a stacking approach based on classification
via model trees [5].

2.1 The Stacking Framework

Stacking is concerned with combining multiple classifiers generated by using
different learning algorithms L1, . . . , LN on a single data set S, which consists of
examples si = (xi, yi), i.e., pairs of feature vectors (xi) and their classifications
(yi). In the first phase, a set of base-level classifiers C1, C2, . . . CN is generated,
where Ci = Li(S). In the second phase, a meta-level classifier is learned that
combines the outputs of the base-level classifiers.

To generate a training set for learning the meta-level classifier, a leave-one-
out or a cross validation procedure is applied. For leave-one-out, we apply each
of the base-level learning algorithms to almost the entire data set, leaving one
example for testing: Ci

k = Lk(S − si). We then use the learned classifiers to
generate predictions for si: ŷk

i = Ci
k(xi). The meta-level data set consists of

examples of the form ((ŷ1

i , . . . , ŷN
i), yi), where the features are the predictions

of the base-level classifiers and the class is the correct class of the example at
hand.

In contrast to stacking, no learning takes place at the meta-level when com-
bining classifiers by a voting scheme (such as plurality, probabilistic or weighted
voting). The voting scheme remains the same for all different training sets and
sets of learning algorithms (or base-level classifiers). The simplest voting scheme
is the plurality vote. According to this voting scheme, each base-level classifier
casts a vote for its prediction. The example is classified in the class that collects
the most votes.

2.2 Recent Advances

The most important issues in stacking are probably the choice of the features
and the algorithm for learning at the meta-level. Below we review some recent
research on stacking that addresses the above issues.

It is common knowledge that ensembles of diverse base-level classifiers (with
weakly correlated predictions) yield good performance. [9] proposes a stacking
method called SCANN that uses correspondence analysis do detect correlations
between the predictions of base-level classifiers. The original meta-level feature
space (the class-value predictions) is transformed to remove the dependencies,
and a nearest neighbor method is used as the meta-level classifier on this new
feature space.

[13] use base-level classifiers whose predictions are probability distributions
over the set of class values, rather than single class values. The meta-level at-
tributes are thus the probabilities of each of the class values returned by each of
the base-level classifiers. The authors argue that this allows to use not only the
predictions, but also the confidence of the base-level classifiers. Multi-response
linear regression (MLR) is recommended for meta-level learning, while several
learning algorithms are shown not to be suitable for this task.

[12] propose a method for combining classifiers called grading that learns a
meta-level classifier for each base-level classifier. The meta-level classifier predicts
whether the base-level classifier is to be trusted (i.e., whether its prediction will
be correct). The base-level attributes are used also as meta-level attributes, while
the meta-level class values are + (correct) and − (incorrect). Only the base-
level classifiers that are predicted to be correct are taken and their predictions
combined by summing up the probability distributions predicted.

[14] introduce a new meta-level learning method for combining classifiers with
stacking: meta decision trees (MDTs) have base-level classifiers in the leaves, in-
stead of class-value predictions. Properties of the probability distributions pre-
dicted by the base-level classifiers (such as entropy and maximum probability)
are used as meta-level attributes, rather than the distributions themselves. These
properties reflect the confidence of the base-level classifiers and give rise to very
small MDTs, which can (at least in principle) be inspected and interpreted.

[15] report that stacking with MDTs clearly outperforms voting and stacking
with decision trees, as well as boosting and bagging of decision trees. On the
other hand, MDTs perform only slightly better than SCANN and selecting the
best classifier with cross validation (SelectBest). [19] report that MDTs perform
slightly worse as compared to stacking with MLR. Overall, SCANN, MDTs,
stacking with MLR and SelectBest seem to perform at about the same level.

It would seem natural to expect that ensembles of classifiers induced by
stacking would perform better than the best individual base-level classifier: oth-
erwise the extra work of learning a meta-level classifier doesn’t seem justified.
The experimental results mentioned above, however, do not show clear evidence
of this. This has motivated us to investigate the performance of state-of-the-art
stacking methods in comparison to SelectBest and seek new stacking methods
that would be clearly superior to SelectBest.

2.3 Stacking with Multi-Response Model Trees

We assume that each base-level classifier predicts a probability distribution over
the possible class values. Thus, the prediction of the base-level classifier C when

applied to example x is a probability distribution:

pC(x) =
(

pC(c1|x), pC(c2|x), . . . pC(cm|x)
)

,

where {c1, c2, . . . cm} is the set of possible class values and pC(ci|x) denotes the
probability that example x belongs to class ci as estimated (and predicted) by
classifier C. The class cj with the highest class probability pC(cj |x) is predicted
by classifier C. The meta-level attributes are thus the probabilities predicted
for each possible class by each of the base-level classifiers, i.e., pCj (ci|x) for
i = 1, . . . , m and j = 1, . . . , N .

The experimental evidence mentioned above indicates that although SCANN,
MDTs, stacking with MLR and SelectBest seem to perform at about the same
level, stacking with MLR has a slight advantage over the other methods. It would
thus seem as a suitable starting point in the search for better method for meta-
level learning to be used in stacking. Stacking with MLR uses linear regression to
perform classification. A natural direction to look into is the use of model trees
(which perform piece-wise linear regression) instead of MLR: model trees have
namely been shown to perform better than MLR for classification via regression
[5].

MLR is an adaptation of linear regression. For a classification problem with
m class values {c1, c2, . . . cm}, m regression problems are formulated: for problem
j, a linear equation LRj is constructed to predict a binary variable which has
value one if the class value is cj and zero otherwise. Given a new example x to
classify, LRj(x) is calculated for all j, and the class k is predicted with maximum
LRk(x).

In our approach, we use model tree induction instead of linear regression and
keep everything else the same. Instead of m linear equations LRj , we induce
m model trees MTj . M5′ [16], a re-implementation of M5 [10] included in the
data mining suite Weka [17] is used to induce the trees. Given a new example
x to classify, MTj(x) is calculated for all j, and the class k is predicted with
maximum MTk(x). We call our approach stacking with multi-response model
trees and denoted with SMM5 in the tables with experimental results.

3 Experimental Setup

In the experiments, we investigate the following issues:

– The (relative) performance of existing state-of-the-art stacking methods, es-
pecially in comparison to SelectBest.

– The performance of stacking with multi-response model trees relative to the
above methods.

– The influence of the number of base-level classifiers on the (relative) perfor-
mance of the above methods.

We look into the last topic because the recent studies mentioned above use
different numbers of base-level classifiers, ranging from three to eight.

The Weka data mining suite [17] was used for all experiments, within which
all the base-level and meta-level learning algorithms used in the experiments
have been implemented.

3.1 Data Sets

In order to evaluate the performance of the different combining algorithms, we
perform experiments on a collection of twenty-one data sets from the UCI Repos-

itory of machine learning databases [2]. These data sets have been widely used
in other comparative studies.

3.2 Base-Level Algorithms

We perform two batches of experiments: one with three and one with seven
base-level learners. The set of three contains the following algorithms:
• J4.8: a Java re-implementation of the decision tree learning algorithm C4.5 [11],
• IBk: the k-nearest neighbor algorithm of [1], and
• NB: the naive Bayes algorithm of [7].
The second set of algorithms contains, in addition to the above three, also the
following four algorithms:
• K*: an instance-based algorithm which uses an entropic distance measure [6],
• KDE: a simple kernel density estimation algorithm,
• DT: the decision table majority algorithm of [8],
• MLR: the multi-response linear regression algorithm, as used by [13] and

described in Section 2.3.
All algorithms are used with their default parameter settings, with the exceptions
described below. IBk in the set of three learners uses inverse distance weighting
and k was selected with cross validation from the range of 1 to 77. (IBk in the
set of seven learners uses the default parameter values, i.e., no weighting and
k = 1.) The NB algorithm in both sets uses the kernel density estimator rather
than assume normal distributions for numeric attributes.

3.3 Meta-Level Algorithms

At the meta-level, we evaluate the performance of six different schemes for com-
bining classifiers (listed below), each applied with the two different sets of base-
level algorithms described above.
• Vote: The simple plurality vote scheme (see Section 2.1),
• Selb: The SelectBest scheme selects the best of the base-level classifiers by

cross validation.
• Grad: Grading as introduced by [12] and briefly described in Section 2.2.
• Smdt: Stacking with meta decision-trees as introduced by [14] and briefly

described in Section 2.2.
• Smlr: Stacking with multiple-response regression as used by [13] and de-

scribed in Sections 2.2 and 2.3.
• Smm5: Stacking with multiple-response model trees, as proposed by this paper

and described in Section 2.3.

T
a
b
le

1
.
T

h
e

rela
tiv

e
p
erfo

rm
a
n
ce

o
f
3
-cla

ssifi
er

en
sem

b
les

w
ith

d
iff

eren
t

co
m

b
in

in
g

m
eth

o
d
s.

T
h
e

en
try

in
row

X
a
n
d

co
lu

m
n

Y
g
iv

es
th

e
rela

tiv
e

im
p
rov

em
en

t
o
f
X

ov
er

Y
in

%
a
n
d

th
e

n
u
m

b
er

o
f
w

in
s/

lo
ses.

V
o
t
e

S
e
l
b

G
r
a
d

S
m
d
t

S
m
l
r

S
m
m
5

T
o
t
a
l

V
o
t
e

-2
1
.5

3
7
+

/
1
0
–

-4
.1

2
6
+

/
5
–

-2
2
.4

5
6
+

/
1
1
–

-2
7
.4

3
5
+

/
1
1
–

-4
7
.0

6
2
+

/
1
0
–

2
6
+

/
4
7
–

S
e
l
b

1
7
.7

2
1
0
+

/
7
–

1
4
.3

3
1
1
+

/
3
–

-0
.7

6
0
+

/
2
–

-4
.8

5
2
+

/
5
–

-2
1
.0

0
1
+

/
9
–

2
4
+

/
2
6
–

G
r
a
d

3
.9

6
5
+

/
6
–

-1
6
.7

2
3
+

/
1
1
–

-1
7
.6

0
1
+

/
1
2
–

-2
2
.3

9
2
+

/
1
4
–

-4
1
.2

4
1
+

/
1
3
–

1
2
+

/
5
6
–

S
m
d
t

1
8
.3

4
1
1
+

/
6
–

0
.7

5
2
+

/
0
–

1
4
.9

7
1
2
+

/
1
–

-4
.0

7
4
+

/
5
–

-2
0
.1

0
2
+

/
8
–

3
1
+

/
2
0
–

S
m
l
r

2
1
.5

3
1
1
+

/
5
–

4
.6

3
5
+

/
2
–

1
8
.2

9
1
4
+

/
2
–

3
.9

1
5
+

/
4
–

-1
5
.4

0
1
+

/
7
–

3
6
+

/
2
0
–

S
m
m
5

3
2
.0

0
1
0
+

/
2
–

1
7
.3

6
9
+

/
1
–

2
9
.2

0
1
3
+

/
1
–

1
6
.7

3
8
+

/
2
–

1
3
.3

5
7
+

/
1
–

4
7
+

/
7
–

T
a
b
le

2
.
T

h
e

rela
tiv

e
p
erfo

rm
a
n
ce

o
f
7
-cla

ssifi
er

en
sem

b
les

w
ith

d
iff

eren
t

co
m

b
in

in
g

m
eth

o
d
s.

T
h
e

en
try

in
row

X
a
n
d

co
lu

m
n

Y
g
iv

es
th

e
rela

tiv
e

im
p
rov

em
en

t
o
f
X

ov
er

Y
in

%
a
n
d

th
e

n
u
m

b
er

o
f
w

in
s/

lo
ses.

V
o
t
e

S
e
l
b

G
r
a
d

S
m
d
t

S
m
l
r

S
m
m
5

T
o
t
a
l

V
o
t
e

-1
9
.2

1
5
+

/
1
2
–

-6
.7

3
2
+

/
7
–

-1
8
.0

4
4
+

/
9
–

-2
4
.4

0
2
+

/
1
0
–

-4
2
.0

4
0
+

/
1
0
–

1
3
+

/
4
8
–

S
e
l
b

1
6
.1

0
1
2
+

/
5
–

1
0
.4

6
1
1
+

/
4
–

0
.9

7
3
+

/
3
–

-4
.3

7
5
+

/
7
–

-1
9
.1

7
2
+

/
7
–

3
3
+

/
2
6
–

G
r
a
d

6
.3

0
7
+

/
2
–

-1
1
.6

8
4
+

/
1
1
–

-1
0
.6

0
5
+

/
7
–

-1
6
.5

6
2
+

/
1
2
–

-3
3
.0

9
0
+

/
1
2
–

1
8
+

/
4
4
–

S
m
d
t

1
5
.2

9
9
+

/
4
–

-0
.9

7
3
+

/
3
–

9
.5

9
7
+

/
5
–

-5
.3

9
5
+

/
6
–

-2
0
.3

3
0
+

/
1
1
–

2
4
+

/
2
9
–

S
m
l
r

1
9
.6

2
1
0
+

/
2
–

4
.1

9
7
+

/
5
–

1
4
.2

1
1
2
+

/
2
–

5
.1

1
6
+

/
5
–

-1
4
.1

8
1
+

/
5
–

3
6
+

/
1
9
–

S
m
m
5

2
9
.6

0
1
0
+

/
0
–

1
6
.0

8
7
+

/
2
–

2
4
.8

6
1
2
+

/
0
–

1
6
.8

9
1
1
+

/
0
–

1
2
.4

2
5
+

/
1
–

4
5
+

/
3
–

3.4 Evaluating and Comparing Algorithms

In all the experiments presented here, classification errors are estimated using
ten-fold stratified cross validation. Cross validation is repeated ten times using
different random generator seeds resulting in ten different sets of folds. The same
folds (random generator seeds) are used in all experiments. The classification
error of a classification algorithm C for a given data set as estimated by averaging
over the ten runs of ten-fold cross validation is denoted error(C).

For pair-wise comparisons of classification algorithms, we calculate the rel-
ative improvement and the paired t-test, as described below. In order to eval-
uate the accuracy improvement achieved in a given domain by using classifier
C1 as compared to using classifier C2, we calculate the relative improvement:
1−error(C1)/error(C2). The average relative improvement across all domains is
calculated using the geometric mean of error reduction in individual domains:
1−geometric mean(error(C1)/error(C2)). Note that this may be different from
geometric mean(error(C2)/error(C1)) −1.

The classification errors of C1 and C2 averaged over the ten runs of 10-fold
cross validation are compared for each data set (error(C1) and error(C2) refer to
these averages). The statistical significance of the difference in performance is
tested using the paired t-test (exactly the same folds are used for C1 and C2)
with significance level of 95%: +/− to the right of a figure in the tables with
results means that the classifier C1 is significantly better/worse than C2.

4 Experimental Results

The error rates of the 3-classifier and 7-classifier ensembles induced as described
above on the twenty-one data set and combined with the different combining
methods are given in Table 3. However, for the purpose of comparing the perfor-
mance of different combining methods, Tables 1 and 2 are of much more interest:
they give the average relative improvement of X over Y for each pair of combin-
ing methods X and Y , as well as the number of significant wins/losses. Below
we highlight some of our more interesting findings.

4.1 State-of-the-Art Stacking Methods

Inspecting Tables 1 and 2, we find that we can partition the five combining
algorithms (we do not consider Smm5 at this stage of the analysis) into three
groups. Vote and Grad are at the lower end of the performance scale, Selb
and Smdt are in the middle, while Smlr performs best. While Smlr clearly out-
performs Vote and Grad, the advantage over Selb is slim (3 and 2 more wins
than losses, about 4% relative improvement) and the advantage over Smdt even
slimmer (1 more win than loss in both cases, 4 and 5% of relative improvement).

4.2 Stacking with Multi-Response Model Trees

Returning to Tables 1 and 2, this time paying attention to the relative perfor-
mance of Smm5 to the other combining methods, we find that Smm5 is in a

league of its own. It clearly outperforms all the other combining methods, with
a wins − loss difference of at least 4 and a relative improvement of at least 10%.
The difference is smallest when compared to Smlr.

4.3 The Influence of the Number of Base-Level Classifiers

Studying the differences between Tables 1 and 2, we can note that the relative
performance of the different combining methods is not affected too much by
the change of the number of base-level classifiers. Grad and Smdt seem to be
affected most. The relative performance of Grad improves, while that of Smdt
worsens, when we go from 3 to 7 base-level classifiers: Grad becomes better
than Vote, while Smdt becomes ever-so-slightly worse than Selb. Smm5 and
Smlr are clearly the best in both cases.

5 Conclusions and Further Work

We have empirically evaluated several state-of-the-art methods for constructing
ensembles of classifiers with stacking and shown that they perform (at best)
comparably to selecting the best classifier from the ensemble by cross valida-
tion. We have proposed a new method for stacking, that uses multi-response
model trees at the meta-level. We have shown that it clearly outperforms exist-
ing stacking approaches and selecting the best classifier from the ensemble by
cross validation.

While this study clearly shows good performance of our method on standard
UCI domains, it would be instructive to perform the same experiments on real
applicative domains. Another issue to investigate is the influence of the param-
eters of the meta-level learner (M5’) on overall performance. While conducting
this study and a few other recent studies [19, 15], we have encountered quite a
few contradictions between claims in the recent literature on stacking and our
experimental results e.g., [9, 13, 12]. A comparative study including the data sets
used in these papers and a few other stacking methods (such as SCANN) should
resolve these contradictions and provide a clearer picture of who’s who in stack-
ing. We believe this is a worthwhile topic to pursue in near-term future work. We
also believe that further research on stacking in the context of base-level clas-
sifiers created by different learning algorithms is in order, despite the current
focus of the machine learning community on creating ensembles with a single
learning algorithm with injected randomness or its application to manipulated
training sets, input features and output targets. This should include the pursuit
for better sets of meta-level features and better meta-level learning algorithms.

Acknowledgements
This work was supported in part by the METAL project (ESPRIT Framework IV
LTR Grant Nr. 26.357). Many thanks to Ljupčo Todorovski for the cooperation
on combining classifiers with meta-decision trees and the many interesting and
stimulating discussions related to this paper. Thanks also to Alexander Seewald
for providing his implementation of grading in Weka.

T
a
b
le

3
.
E

rro
r

ra
tes

(in
%

)
o
f
th

e
lea

rn
ed

en
sem

b
les

o
f
cla

ssifi
ers.

3
b
a
se

l
e
v
e
l

c
l
a
ssif

ie
r
s

7
b
a
se

l
e
v
e
l

c
l
a
ssif

ie
r
s

D
a
t
a

se
t

V
o
t
e

S
e
l
b

G
r
a
d

S
m
d
t

S
m
l
r

S
m
m
5

V
o
t
e

S
e
l
b

G
r
a
d

S
m
d
t

S
m
l
r

S
m
m
5

a
u
st

r
a
l
ia

n
1
3
.8

1
1
3
.7

8
1
4
.0

4
1
3
.7

7
1
4
.1

6
1
4
.2

9
1
3
.9

9
1
4
.8

4
1
4
.4

6
1
5
.0

6
1
3
.9

7
1
4
.2

6
b
a
l
a
n
c
e

8
.9

1
8
.5

1
8
.7

8
8
.5

1
9
.4

7
4
.3

7
1
0
.1

4
8
.4

8
1
0
.0

2
8
.4

5
1
0
.5

1
4
.9

9
b
r
e
a
st

-w
3
.4

6
2
.6

9
3
.6

9
2
.6

9
2
.7

3
2
.8

2
3
.6

5
2
.6

9
3
.6

5
2
.6

9
2
.7

2
2
.7

0
b
r
id

g
e
s-t

d
1
5
.7

8
1
5
.7

8
1
5
.1

0
1
6
.0

8
1
4
.1

2
1
4
.6

1
1
5
.3

9
1
6
.4

7
1
5
.3

9
1
7
.4

5
1
5
.5

9
1
5
.6

9
c
a
r

6
.4

9
5
.8

3
6
.1

0
5
.0

2
5
.6

1
1
.5

2
6
.7

3
5
.6

9
5
.3

2
3
.7

2
4
.2

4
1
.3

8

c
h
e
ss

1
.4

6
0
.6

0
1
.1

6
0
.6

0
0
.6

0
0
.6

0
1
.5

9
0
.6

0
1
.2

0
0
.6

0
0
.6

0
0
.6

2
d
ia

b
e
t
e
s

2
4
.0

1
2
5
.0

9
2
4
.2

6
2
4
.7

4
2
3
.7

8
2
4
.1

0
2
4
.1

0
2
3
.1

1
2
4
.3

8
2
4
.2

7
2
3
.7

0
2
4
.0

5
e
c
h
o

2
9
.2

4
2
7
.6

3
3
0
.3

8
2
7
.7

1
2
8
.6

3
2
7
.6

3
3
0
.9

2
2
8
.6

3
3
0
.9

2
3
0
.6

1
2
9
.5

4
3
0
.2

3
g
e
r
m
a
n

2
5
.1

9
2
5
.6

9
2
5
.4

1
2
5
.6

0
2
4
.3

6
2
4
.9

7
2
4
.0

8
2
4
.6

7
2
4
.3

9
2
4
.2

9
2
3
.2

0
2
3
.2

5
g
l
a
ss

2
9
.6

7
3
2
.0

6
3
0
.7

5
3
1
.7

8
3
0
.9

3
3
1
.2

6
2
5
.7

9
2
5
.1

9
2
6
.5

4
2
5
.5

6
2
4
.6

3
2
5
.0

5

h
e
a
r
t

1
7
.1

1
1
6
.0

4
1
7
.7

0
1
6
.0

4
1
5
.3

0
1
5
.6

7
1
7
.2

6
1
6
.1

5
1
7
.4

8
1
6
.6

3
1
6
.0

4
1
5
.8

5
h
e
pa

t
it

is
1
7
.4

2
1
5
.8

7
1
8
.3

9
1
5
.8

7
1
5
.6

8
1
4
.9

7
1
6
.3

9
1
6
.0

6
1
7
.2

3
1
6
.7

1
1
6
.8

4
1
6
.1

3
h
y
p
o

1
.3

2
0
.7

2
0
.8

0
0
.7

9
0
.7

2
0
.7

6
1
.5

6
0
.7

6
1
.0

5
1
.3

5
0
.7

7
0
.7

8
im

a
g
e

2
.9

4
2
.8

5
3
.3

2
2
.5

3
2
.8

4
2
.8

4
1
.9

2
3
.0

3
1
.9

8
2
.4

7
2
.0

2
2
.0

5
io

n
o
sp

h
e
r
e

7
.1

8
8
.4

0
8
.0

6
8
.8

3
7
.3

5
6
.5

5
8
.5

2
8
.4

3
8
.6

0
8
.8

0
7
.1

2
7
.8

9

ir
is

4
.2

0
4
.7

3
4
.4

0
4
.7

3
4
.4

7
4
.4

7
5
.0

0
4
.4

0
4
.8

7
4
.4

0
4
.9

3
5
.2

0
so

y
a

6
.7

5
7
.2

2
7
.3

8
7
.0

6
7
.2

2
6
.6

5
6
.7

1
6
.2

2
6
.3

3
6
.3

4
7
.3

6
6
.3

7
t
ic

-t
a
c
-t

o
e

9
.2

4
0
.9

6
6
.0

8
0
.9

6
0
.5

8
0
.2

6
3
.5

8
0
.9

6
2
.4

6
0
.9

6
0
.6

4
0
.2

7
v
o
t
e

7
.1

0
3
.5

4
5
.2

2
3
.5

4
3
.5

4
3
.3

6
6
.2

5
3
.9

3
5
.2

0
3
.9

3
3
.7

5
3
.7

9
w
a
v
e
f
o
r
m

1
5
.9

0
1
4
.4

2
1
7
.0

4
1
4
.4

0
1
4
.3

3
1
3
.6

9
1
6
.6

4
1
4
.0

4
1
6
.7

8
1
3
.8

5
1
5
.6

5
1
3
.4

8
w

in
e

1
.7

4
3
.2

6
1
.8

0
3
.2

6
2
.8

7
3
.0

3
1
.4

6
2
.3

0
1
.4

6
2
.1

9
2
.0

8
2
.0

2

A
v
e
r
a
g
e

1
1
.8

5
1
1
.2

2
1
1
.9

0
1
1
.1

7
1
0
.9

2
1
0
.4

0
1
1
.5

1
1
0
.7

9
1
1
.4

1
1
0
.9

7
1
0
.7

6
1
0
.2

9

References

1. D. Aha, D.W. Kibler, and M. K. Albert. Instance-based learning algorithms.
Machine Learning, 6:37–66, 1991.

2. C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.
3. T. G. Dietterich. Machine-learning research: Four current directions. AI Magazine,

18(4):97–136, 1997.
4. T. G. Dietterich. Ensemble methods in machine learning. In Proceedings of the

First International Workshop on Multiple Classifier Systems, pages 1–15, Berlin,
2000. Springer.

5. E. Frank, Y. Wang, S. Inglis, G. Holmes, and I. H. Witten. Using model trees for
classification. Machine Learning, 32(1):63–76, 1998.

6. G. C. John and E. T. Leonard. K*: An instance-based learner using an entropic
distance measure. In Proceedings of the 12th International Conference on Machine
Learning, pages 108–114, San Francisco, 1995. Morgan Kaufmann.

7. G. H. John and P. Langley. Estimating continuous distributions in bayesian clas-
sifiers. In Proceedings of the Eleventh Conference on Uncertainty in Artificial
Intelligence, pages 338–345, San Francisco, 1995. Morgan Kaufmann.

8. R. Kohavi. The power of decision tables. In Proceedings of the Eighth European
Conference on Machine Learning, pages 174–189, 1995.

9. C. J. Merz. Using correspondence analysis to combine classifiers. Machine Learn-
ing, 36(1/2):33–58, 1999.

10. J. R. Quinlan. Learning with continuous classes. In Proceedings of the Fifth
Australian Joint Conference on Artificial Intelligence, pages 343–348, Singapore,
1992. World Scientific.

11. J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Francisco, 1993.

12. A. K. Seewald and J. Fürnkranz. An evaluation of grading classifiers. In Advances
in Intelligent Data Analysis: Proceedings of the Fourth International Symposium
(IDA-01), pages 221–232, Berlin, 2001. Springer.

13. K. M. Ting and I. H. Witten. Issues in stacked generalization. Journal of Artificial
Intelligence Research, 10:271–289, 1999.

14. L. Todorovski and S. Džeroski. Combining multiple models with meta decision
trees. In Proceedings of the Fourth European Conference on Principles of Data
Mining and Knowledge Discovery, pages 54–64, Berlin, 2000. Springer.

15. L. Todorovski and S. Džeroski. Combining classifiers with meta decision trees.
Machine Learning, In press, 2002.

16. Y. Wang and I. H. Witten. Induction of model trees for predicting continuous
classes. In Proceedings of the Poster Papers of the European Conference on Ma-
chine Learning, Prague, 1997. University of Economics, Faculty of Informatics and
Statistics.

17. I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations. Morgan Kaufmann, San Francisco, 1999.

18. D. Wolpert. Stacked generalization. Neural Networks, 5(2):241–260, 1992.
19. B. Ženko, L. Todorovski, and S. Džeroski. A comparison of stacking with mdts

to bagging, boosting, and other stacking methods. In Proceedings of the First
IEEE International Conference on Data Mining, pages 669–670, Los Alamitos,
2001. IEEE Computer Society.

