
Relational Ranking with Predictive Clustering Trees

Sǎso Ďzeroski and Ljup̌co Todorovski
Department of Intelligent Systems

Jǒzef Stefan Institute
Jamova 39, SI-1000 Ljubljana, Slovenia

Hendrik Blockeel
Department of Computer Science
Katholieke Universiteit Leuven

Celestijnenlaan 200A, B-3001 Heverlee, Belgium

Abstract

A novel class of applications of predictive clustering
trees is addressed, namely relational ranking. Predictive
clustering trees, as implemented in TILDE, allow for pre-
dicting multiple target variables from relational data. This
approach makes sense especially if the target variables are
not independent of each other. This is typically the case
in ranking, where the (relative) performance of several ap-
proaches on the same task has to be predicted from a given
description of the task.

We propose to use predictive clustering trees for
ranking. This allows us to use relational descriptions of the
tasks. As compared to existing ranking approaches which
are instance-based, our approach also allows for an ex-
planation of the predicted rankings. We illustrate our ap-
proach on the task of ranking machine learning algorithms,
where the (relative) performance of the algorithms on a
given dataset has to be predicted from a given (relational)
dataset description.

1. Introduction

In many cases, running an algorithm on a given task can
be time consuming, especially when complex tasks are in-
volved. It is therefore desirable to be able to predict the
performance of a given algorithm on a given task from a
description (set of properties of the task) and without actu-
ally running the algorithm. The term “performance of an
algorithm” is often used to denote the quality of the solu-
tion provided, the running time of the algorithm or some
combination of the two.

As an example, consider the task of optimization, e.g.,
finding the minimum value of a function. Given an opti-
mization algorithm (say Levenberg-Marquardt), we might
be interested in predicting the quality of the solution found
(e.g., how close to the real optimum was the solution) and/or
the running time of the algorithm. A description of the task

would be a description of the function to be optimized (e.g.,
in terms of the number of different trigonometric and alge-
braic operators appearing in it, the size of the tree needed to
encode the function, etc.).

When several algorithms are available to solve the same
type of task, the problem of choosing an appropriate algo-
rithm for the particular task at hand arises. We can view this
as a multi-target prediction problem, where the same input
(the task description) is used to predict several related tar-
gets (the performances of the different algorithms). In this
context, it is the relative performance of the different algo-
rithms that matters, and not so much the absolute perfor-
mance of each of them. We are thus interested in obtaining
an ordering of the algorithms (called ranking) in terms of
their expected relative performance.

Within the area of machine learning, many learning al-
gorithms have been developed, especially for classification
tasks. A classification task is specified by giving a table
of data and indicating the target column: the pair is often
referred to as a dataset. The task of predicting the perfor-
mance of learning algorithms from dataset properties has
been addressed within the StatLog project [5], while the
task of ranking learning algorithms has been one of the ma-
jor topics of study of the METAL project [1]. Both are
treated as learning problems, where the results of applying
selected learning algorithms on selected datasets (base-level
learning) constitute a dataset for meta-level learning.

A typical meta-level dataset for ranking thus consists of
two parts. The first set of columns (attributes) contain a de-
scription of the task at hand. In the case of ranking learning
algorithms, it typically contains general and statistical prop-
erties of datasets (such as the number of examples and class
values and the average kurtosis per numerical attribute).
The second set of columns contains the performance fig-
ures for the learning algorithms on the given datasets (e.g.,
the classification error of C5.0, RIPPER, etc.).

Many different variants of ranking have been studied
within the METAL project. A prototypical ranker uses a
case-based (nearest neighbor) approach. To produce a rank-

ing on the learning algorithms a new dataset, the most sim-
ilar datasets from the meta-level dataset are chosen and
the performances (rankings) of the algorithms on theses
datasets are averaged to obtain a prediction of the perfor-
mance (ranking) on the new dataset.

In this paper, we propose to use a relational representa-
tion of tasks (datasets) in ranking instead of a propositional
one. This allows us to represent the tasks in more detail,
e.g., include the kurtosis values for each numerical attribute
rather than include only the average kurtosis per numerical
attribute. We also propose to use predictive clustering trees
for ranking instead of case-based approaches. In this case,
in addition to obtaining a ranking, we also obtain an expla-
nation.

The remainder of this paper is organized as follows. Sec-
tion 2 describes in more detail the task of relational rank-
ing of learning algorithms. This includes the base-level
datasets, the algorithms ranked, the performance evaluation
methodology, and finally the propositional and relational
descriptions of datasets. Section 3 briefly describes predic-
tive clustering trees and describes the particular formulation
of the multi-target (relative) performance prediction used in
our experiments. Section 4 describes the experimental setup
and the results of evaluating our approach to ranking learn-
ing algorithms. Finally, Section 5 concludes with a sum-
mary and possible directions for future work.

Table 1. Ten machine learning algorithms for
classification tasks used in our study.

Acronym Brief description
c50tree C5.0 - decision trees based classifier
c50rules decision rules extracted from a C5.0 tree
c50boost boosting C5.0 decision trees
ltree linear discriminant decision trees
ripper decision rules based classifier
mlcnb naive Bayes classifier (MLC++)
mlcib1 1-NN nearest neighbor classifier (MLC++)
lindiscr linear discriminant classifier
clemMLP multilayer perceptron ANN (Clementine)
clemRBFN radial-basis functions ANN (Clementine)

2. Relational Ranking of Learning Algorithms

This section describes in more detail the task of rela-
tional ranking of learning algorithms. This includes the al-
gorithms ranked, the base-level datasets, the propositional
and relational descriptions of the datasets, and the perfor-
mance evaluation methodology.

2.1 The machine learning algorithms

In this study, we analyze the relative performance of ten
machine learning algorithms for classification tasks. The
list of algorithms is presented in Table 1: these are the ten
algorithms used within the METAL project [1]. This set in-
cludes one or more representatives of different classification
approaches, such as decision trees and rules, naive Bayes,
nearest neighbor and linear discriminant classifiers, as well
as neural networks.

Table 2. Forty-two classification datasets
used in our study.

.

abalone adult allbp
allhyper allhypo allrep
ann byzantine cclassflares
car contraceptive dis
dnasplice fluid germannumb
germansymb krkopt letter
m classflares mushrooms musk
nettalk nursery optical
page pendigits pyrimidines
quadruped quisclas segment
shuttle sick sickeuthyroid
splice taskapart hhold taskapart related
taskbhhold triazines waveform21
waveform40 xclassflares yeast

2.2 The datasets

The performance of these ten algorithms have been mea-
sured on a set of forty-two classification tasks (datasets)
used within the METAL project.1 The list of datasets is
given in Table 2. Some of these come from the UCI Repos-
itory of Machine Learning Datasets, while others are pro-
prietary.

2.3 Dataset descriptions

Each classification task from Table 2 is described using
a set of task properties. In the StatLog project, a set of gen-
eral, statistical and information theory based dataset prop-
erties has been used [5] for dataset description. This gave
rise to the Data set Characterizing Tool (DCT) [7], devel-
oped further within the METAL project [8], that extends

1Fifty-three classification tasks are considered within the METAL
meta-level learning studies. However, in our study we have used only a
subset of forty-two classification tasks, where the meta-level data (both
properties and performance measures) were available. We will include the
whole set of METAL classification tasks in our study, as soon as meta-level
data become available.

Table 3. Data set properties.
Whole dataset
num of attrs numof sym attrs
num of num attrs numof examples
num of classes missingvalues
lines with missingvalues meanskewness
meankurtosis numof attrswith outliers
M stat M statDF
M statChiSq M statChiSqalpha
SD ratio fract
cancor wilkslambda
Bartlett stat BartlettstatDF
Bartlett statChiSq BartlettstatChiSqalpha
classentropy entropyattributes
joint entropy equivalentnum of attrs
noisesignal ratio percsym attrs
percnum attrs examplesper attr
classesper attr rel num of attrswith outliers
rel equivalentnum of attrs lognum of examples

Per attribute Aggregates
percmissingvalues AVG MIN MAX
skewness AVG MIN MAX
kurtosis AVG MIN MAX
multi correl AVG MIN MAX
gini index AVG MIN MAX
relevance AVG MIN MAX
g function AVG MIN MAX
classfreq MAX

the set of StatLog properties. We included most of the DCT
properties in the dataset descriptions used in this study. The
complete list of dataset properties is presented in Table 3.

There are two groups of DCT properties. The first group
contains properties of the entire dataset (first column in Ta-
ble 3), while the second group contains properties of indi-
vidual attributes in the dataset (second column in Table 3).
In addition, the probability distribution of the class is also
included.

The general DCT properties include simple facts about
the dataset, such as number of examples, (nominal and nu-
meric) attributes and class values, but also more compli-
cated statistical and information theory based measures of
the whole dataset. Furthermore, six measures are used to
characterize individual attributes. Three of them are statis-
tical measures for numerical attributes and three of them are
information theory based measures for discrete attributes.

Properties of the individual attributes can not be used di-
rectly in propositional meta-learning, where the dataset de-
scription is a fixed-length vector of dataset properties. For
this purpose, each property of the individual attributes is

aggregated using the average, minimum or maximum func-
tion. The relational framework for meta-learning allows for
a more complex representation of data sets [11]. In this
study, we include all the DCT properties from Table 3, both
global properties of the entire dataset (the general and ag-
gregated ones) and properties of individual attributes.

2.4 The performance of a learning algorithm

When building a dataset for meta-learning, we also need
an estimate of the performance of the learning algorithms
on a given classification task. Most often, the performance
of a learning algorithma on a given classification taskd is
measured by the predictive accuracyACC(a, d), i.e., the
percentage of correctly classified examples. To estimate
this predictive accuracy on test examples, unseen during the
training of the classifier, a standard ten-fold cross valida-
tion method has been used. Another performance measure
of a learning algorithma is its running timeT (a, d) on a
given datasetd. A third performance measure that combines
the predictive accuracy with the running time of a machine
learning algorithm named “adjusted ratio of ratios” has been
proposed in [10]:

ARR(ap, d) =
∑

aq∈A,aq 6=ap

ARR(ap, aq, d),

ARR(ap, aq, d) =
ACC(ap,d)
ACC(aq,d)

1 +
log

(
T (ap,d)
T (aq,d)

)
KT

whereA is the set of learning algorithms under study, and
KT is a user-defined value that determines the relative im-
portance of the running time. TheKT parameter is ap-
proximated byKT = 1/X%, whereX is the accuracy
one is willing to trade for a 10 times speedup or slowdown.
However, due to the lack of the data about running time of
the algorithms, we used the ARR measure with the setting
KT = inf which eliminates the influence of time.

3. Relational Ranking with
Predictive Clustering Trees

This section first briefly describes predictive clustering
trees. It then discusses how they could be used to predict the
accuracies of different learning algorithm on a given dataset
simultaneously. It finally proposes to use the ranks calcu-
lated from the accuracies as the target variables, rather than
the accuracies themselves.

3.1 Predictive Clustering Trees

A variety of algorithms for predictive modeling exists.
Among the better known are algorithms that induce deci-
sion trees [6, 9]. Compared to other well-known techniques

such as neural networks [2], decision trees have the advan-
tage of being more interpretable: they clearly explicitate the
factors that influence the outcome most strongly.

Decision trees are most often used in the context of clas-
sification or single-target regression; i.e., they represent a
model in which the value of a single variable is predicted.
However, as a decision tree naturally identifies partitions of
the data (course-grained at the top of the tree, fine-grained
at the bottom), one can also consider a tree as a hierarchy of
clusters. A good cluster hierarchy is one in which individu-
als that are in the same cluster are also similar with respect
to a number of observable properties.

This leads to a simple method for building trees that al-
low the prediction of multiple target attributes at once. If
we can define a distance measure on tuples of target vari-
able values, we can build decision trees for multi-target pre-
diction. The standard TDIDT algorithm can be used: as a
heuristic for selecting tests to include in the tree, we use the
minimization of intra-cluster variance (and maximization of
inter-cluster variance) in the created clustering.

A detailed description of the algorithm (called TIC) can
be found in [3]. We used the implementation of TIC as
available in the first-order learner TILDE that is included in
the ACE tool [4]. This implementation allows for relational
tests to be used in the nodes of predictive clustering trees
through the use of declarative bias.

3.2 Ranking via Predicting Errors

The instance-based approaches to ranking predict rank-
ings of algorithms on a dataset by predicting the accuracies
of the algorithms on the dataset, then creating a ranking
from these. An instance here consists of a description of
a dataset, plus the performance of 10 different algorithms
on that dataset (this performance can be measured as accu-
racies or ARR values). Based on these 10 target values, an
example can be positioned in a 10-dimensional space.

In its standard mode of operation, TILDE builds its trees
so that the intra-cluster variance is minimized, where vari-
ance is defined as

N∑
j=1

d(xj , x̄)2

wherex̄ is the mean vector of the cluster,xj is an element of
the cluster,N is the number of elements in the cluster, andd
represents the euclidean distance. So, what TILDE does is
trying to create clusters in such a way that a given algorithm
will perform similarly on all datasets in that cluster.

Note that this is different from what we want: creating
clusters in which several algorithms have the same relative
performance. To illustrate this, suppose we have 4 algo-
rithms which on 2 datasets score the following accuracies:

{(0.1, 0.2, 0.3, 0.4), (0.5, 0.6, 0.7, 0.8)}

Clearly the relative performance of the 4 algorithms is ex-
actly the same on the three datasets, so they belong to the
same cluster. However, the variance in this cluster is rela-
tively large. Compare this to

{(0.1, 0.2, 0.3, 0.4), (0.4, 0.3, 0.2, 0.1)}

which has a smaller variance than the previous cluster but is
clearly worse: the relative performances are opposite.

3.3 Ranking Trees

A solution for this problem is to first rank the algorithms
and to predict these ranks instead of the accuracies them-
selves. In this way, we obtain ranking trees. A ranking tree
has leaves in which a ranking of the performance of differ-
ent algorithms is predicted.

This transformation removes fluctuations in the variance
that are caused by differences in absolute rather than relative
performance. Moreover, given the formula for the Spear-
man correlation:

rs = 1− 6
(
∑n

i=1 Di
2)

n3 − n

whereDi is the difference between actual and predicted
rank of thei’th algorithm andn is the number of learn-
ing algorithms, it is clear that a linear relationship between
variance and expected Spearman correlation exists. Indeed,
note that

d(x, x̄)2 =
n∑

i=1

Di
2

on the condition that the “predicted rank” in each leaf of the
tree is indeed the number found for the algorithm.

The latter condition is a problem. The predictive cluster-
ing tree might predict, in a specific case,

(6.7, 6.0, 6.4, 3.65, 6.1, 5.65, 3.5, 5.65, 3.7, 7.65)

If we would use these numbers as predictions, minimizing
intra-cluster variance would be equivalent to maximizing
expected correlation. However, if we rank algorithms based
on these numbers, i.e. use the ranks of the numbers

(9, 6, 8, 2, 7, 4.5, 1, 4.5, 3, 10)

instead of the original numbers, then the equivalence does
not hold anymore, and minimizing intra-cluster variance
should be seen as an approximation to maximizing Spear-
man correlation.

4. Experiments

Our experiments investigate the performance of rela-
tional ranking with predictive clustering trees on the dataset

described in Section 2. Following the discussion from Sec-
tion 3.3, we transformed the target accuracies and ARR
values into ranks. Doing this, we noticed that both perfor-
mance measures result into the same ranking of the learning
algorithms, thus from now on, we do not make distinction
between these two performance measures. The remainder
of this section first describes the experimental setup, and
in particular the language biases used, and the pruning per-
formed. It then presents the experimental results, including
an example ranking tree and performance figures on the cor-
relation between actual and predicted rankings.

4.1 Experimental Setup

The TILDE system has a number of settings that influ-
ence its behavior. We have performed several experiments,
using default values for all settings except the following set-
tings, which were varied (an explanation follows):

• Language bias: None, Prop, Rel, Both

• Ftest settings: 0.001, 0.005, 0.01, 0.05, 0.1, 1.0

The four language bias settings correspond to using
only propositional information (i.e., properties of the whole
dataset and aggregations of the properties of the individual
attributes/classes), only relational information (i.e, proper-
ties of individual attributes/classes only), both, or no infor-
mation at all. The latter bias was included to measure the
performance of “default” models that consists of just a leaf
(these predict the average of the values encountered in the
training set). For the propositional data, the language bias
consists of testsA < c with A a meta-attribute (all meta-
attributes are numeric) andc some value for it (any value
from A’s domain was allowed). The number ofA, c com-
binations (i.e., the number of possible tests that can be con-
structed at a single node) is over 1400.

For the relational data, a language was constructed that
essentially allows to check properties of an individual at-
tribute of a dataset, e.g., check if the skewness of some nu-
meric attribute of that dataset is above a certain value. Note
that checking for the existence of an attribute with skewness
> 1 (for instance) is equivalent to checking whether the
maximum of all skewness values is> 1. As such maxima
(and minima) are included in the propositional descriptions
of the datasets, this in itself does not yield more expressive-
ness. With the relational version it is however also possible
to check for the existence of a single attribute in a dataset
that has several properties, e.g., “is there an attribute with
skewness> 1 and kurtosis< 0”; this kind of tests cannot
be constructed in our propositional representation. With the
relational representation, the number of tests considered at
a specific node of the tree varies from 566 to over 1000.

The Ftest setting in TILDE is a stopping heuristic based
on the classical statistical F-test. The values indicate sig-
nificance levels; lower values cause the tree to be smaller.
We have not exhaustively searched the space of all possi-
ble parameter settings, but instead explored it more or less
intuitively, in a kind of hill-climbing fashion. More specif-
ically, we first performed the following experiment: “With
language Rel and varying Ftest from 0.001 to 1.0, estimate
the performance of ranking trees using leave-one-out”. The
results suggested that best performance is obtained at high
Ftest values, i.e., with the least-pruned trees.

Table 4. Performances of PCTs induced us-
ing three different biases (propositional, rela-
tional and both) compared to the default per-
formance (of a single-node PCT).

F = 0.05 F = 0.1 F = 1.0
RE rs RE rs RE rs

propositional 1.16 0.46 1.13 0.49 1.20 0.46
relational 1.06 0.47 0.94 0.49 0.87 0.53
both 1.12 0.47 1.10 0.49 1.16 0.48
default 1.0 0.51 1.0 0.51 1.0 0.51

4.2 Experimental Results

We next performed a second experiment: “For all lan-
guage biases, and for large Ftest values (0.05, 0.1, 1.0), esti-
mate the performance of ranking trees using leave-one-out.”
The results are reported in Table 4.RE is the relative error
as estimated by TILDE using leave-one-out.rs is the aver-
age Spearman rank correlation between the predicted rank-
ing and the actual ranking of a left-out instance. The table
makes clear that the best results are obtained for relational
data with an F-test value of 1.0: here theRE is lowest, and
thers is highest.

There are a few interesting observations to make.

• Results in general are not very good, with mostRE’s
over 1.0 (i.e. worse than default prediction, squared-
error-wise) and, unsurprisingly in this light, mostrs

below the defaultrs of 0.51. It is somewhat strange
that a learner would almost consistently construct the-
ories worse than default; we suspect that the very small
datasets and the pessimistic bias of cross-validation
causes these results to look somewhat worse than they
really are.

• The best result is obtained for the relational represen-
tation. A closer look at the induced trees reveals that

Table 5. An example ranking tree. In each leaf node the ranking of ten machinge larning algorithms
is predicted. The following labels are used to dentote learning algorithms (See also Table 1): c5t =
c50tree, c5r = c50rules, c5b = c50boost, lt = ltree, rip = ripper, nb = mlcnb, ib = mlcib1, ld = lindiscr,
mlp = clemMLP, rbfn = clemRBFN. The ’ <’ sign is used to dentoe the relation ’performs worse than’.

err_ranks(A,B,C,D,E,F,G,H,I,J,K)
classvalue_freq(A,L,M),M < 0.165 ?
+--yes:attr_skew_all(A,N,O),O>3.64 ?
| +--yes:classvalue_freq(A,P,Q),Q>0.318 ?
| | +--yes:classvalue_freq(A,L,R),R < 0.097 ?
| | | +--yes:attr_gfunction(A,S,T),T> -0.437 ?
| | | | +--yes:attr_relevance(A,S,U),safe(U>0.235) ?
| | | | | +--yes:ld < nb < rbfn < ib < mlp < rip < lt < c5r < c5b < c5t
| | | | | +--no: nb < ld < rbfn < mlp < lt < ib < rip < c5r < c5t < c5b
| | | | +--no: classvalue_freq(A,L,V),V < 0.003 ?
| | | | +--yes:rbfn < c5b < mlp < ld < nb < lt < ib < c5r < c5t < rip
| | | | +--no: rbfn < c5b < ld < nb < mlp < ib < rip < lt < c5t < c5r
| | | +--no: mlp < rbfn < nb < ld < ib < rip < c5b < c5r < c5t < lt
| | +--no: attr_skew_all(A,N,W),W < 5.217 ?
| | +--yes:mlp < c5b < nb < rip < rbfn < c5t < ld < c5r < lt < ib
| | +--no: nb < ib < rbfn < mlp < c5t < lt < ld < c5r < rip < c5b
| +--no: classvalue_freq(A,X,Y),Y>0.786 ?
| +--yes:nb < ld < ib < c5b < rip < lt < mlp < c5r < c5t < rbfn
| +--no: attr_skew_all(A,Z,A1),A1 < -0.612 ?
| +--yes:ld < rip < c5t < nb < c5r < rbfn < lt < mlp < c5b < ib
| +--no: attr_relevance(A,B1,C1),safe(C1 < 0.062) ?
| +--yes:rbfn < ld < nb < rip < lt < c5t < mlp < c5r < ib < c5b
| +--no: c5b < ld < rbfn < nb < mlp < rip < lt < c5r < c5t < ib
+--no: attr_skew_all(A,D1,E1),E1>2.095 ?

+--yes:attr_skew_all(A,F1,G1),G1 < -0.26 ?
| +--yes:rbfn < mlp < nb < rip < ld < ib < c5b < c5r < c5t < lt
| +--no: nb < rbfn < ld < ib < c5t < lt < rip < c5r < mlp < c5b
+--no: attr_skew_all(A,H1,I1),I1> -1.303 ?

+--yes:attr_kurt_all(A,H1,J1),safe(J1 < 1.631) ?
| +--yes:ib < c5t < mlp < c5r < rip < rbfn < lt < c5b < nb < ld
| +--no: ib < c5t < rip < c5r < nb < c5b < rbfn < lt < ld < mlp
+--no: mlp < rbfn < ib < ld < lt < c5r < c5t < rip < nb < c5b

the essentially relational aspects of the representation
are used, but not very often, i.e., most of the trees
could in principle also be found from propositional
data. Our explanation for this is that the large number
of attributes in the propositional descriptions confuses
the tree learner. Somewhat unintuitively, the relational
bias is actually stronger (there are fewer splits possi-
ble): consequently, the relational descriptions are more
concise and can focus on more relevant properties.

We have taken a closer look at the tree in Figure 5, de-
rived from the entire dataset with the optimal settings. The
tree suggests, for instance, that the most important prop-
erty of a dataset with respect to the behavior of learning
algorithms is whether that dataset contains an infrequent
class (“infrequent” defined here as having a frequency be-

low 0.165). Also, the skewness of attribute distributions is
identified as highly relevant. Finally, the tree uses relational
information, for example, one leaf includes the condition:
“there is an attribute with skewness above -1.303 and kur-
tosis below 1.631.”

5. Summary and Further Work

We have used predictive clustering trees to rank (predict
the relative performance of) machine learning algorithms
for classification. A relational description of datasets is
used, which allows to specify dataset properties in more
detail: for example, properties of individual attributes can
be used rather than bulk properties averaged across all at-
tributes of a dataset. The relational ranking trees perform

better than propositional ranking trees and also better than
the default ranking when a smaller amount of tree pruning is
applied. As compared to existing ranking approaches which
are propositional and instance-based, our approach also al-
lows for an explanation of the predicted rankings.

An immediate direction for further work is to repeat
the experimental evaluation on the full METAL ranking
dataset (53 meta-level data points) once it becomes avail-
able. Given the size of the meta-level dataset, any additional
point matters. This would also allow for a direct comparison
to the propositional instance-based approaches to ranking.

Other directions for further work include the definition
of a relational distance measure on datasets and the use of
relational instance-based learning for relational ranking. In-
vestigating the use of kernels for relational data would also
be an interesting direction to pursue. Both approaches work
well for small datasets of high dimensionality.

If we can deal with small datasets of high dimensionality,
it makes sense to also consider additional dataset properties.
Dataset properties based on landmarking have been shown
to predict performance well and to be useful for ranking.
Also, features based on the shape of decision trees induced
from a datasets could be interesting in this respect.

Finally, the relational ranking methodology proposed in
the paper can be also used and evaluated on other ranking
tasks. A possible application would be the ranking of op-
timization algorithms on the basis of descriptions of opti-
mization problems.

References

[1] ESPRIT METAL Project (project number 26.357):
A Meta-Learning Assistant for Providing User
Support in Machine Learning and Data Mining.
http://www.metal-kdd.org/ .

[2] C. M. Bishop. Neural Networks for Pattern Recogni-
tion. University Press, Oxford, 1999.

[3] H. Blockeel, L. De Raedt, and J. Ramon. Top-down in-
duction of clustering trees. InProceedings of the 15th
International Conference on Machine Learning, pages
55–63, 1998.http://www.cs.kuleuven.ac. -
be/˜ml/PS/ML98-56.ps .

[4] H. Blockeel, L. Dehaspe, B. Demoen, G. Janssens,
J. Ramon, and H. Vandecasteele. Improving the ef-
ficiency of inductive logic programming through the
use of query packs.Journal of Artificial Intelligence
Research, 16: 135–166, 2002.

[5] P. B. Brazdil and R. J. Henery. Analysis of results.
In D. Michie, D. J. Spiegelhalter, and C. C. Taylor,
editors,Machine learning, neural and statistical clas-
sification, pages 98–106. Ellis Horwood, 1994.

[6] L. Breiman, J.H. Friedman, R.A. Olshen, and
C.J. Stone. Classification and Regression Trees.
Wadsworth, Belmont, 1984.

[7] R. Engels and C. Theusinger. Using a Data Metric for
Offering Preprocessing Advice in Data Mining Appli-
cations. InProceedings of the Thirteenth European
Conference on Artificial Intelligence, pages 430–434,
1998.

[8] G. Lindner and R. Studer. Ast: Support for algo-
rithm selection with a cbr approach. InProceedings of
the ICML-99 Workshop on Recent Advances in Meta-
Learning and Future Work, pages 38–47, 1999.

[9] J. R. Quinlan. C4.5: Programs for Machine Learn-
ing. Morgan Kaufmann series in machine learning.
Morgan Kaufmann, 1993.

[10] C. Soares and P. B. Brazdil. Zoomed ranking: Selec-
tion of classification algorithms based on relevant per-
formance information. InProceedings of the Fourth
European Conference on Principles of Data Mining
and Knowledge Discovery, pages 126–135. Springer,
2000.

[11] L. Todorovski and S. Ďzeroski. Experiments in meta-
level learning with ilp. InProceedings of the Third Eu-
ropean Conference on Principles of Data Mining and
Knowledge Discovery, pages 98–106. Springer, 1999.

