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Abstract. The problem of hierarchical multi-classification is considered.
In this setting a set of classes is to be assigned to a single instance, and
all possible classes are structured according to a hierarchy. Example ap-
plication domains are functional genomics and text classification. An
algorithm is presented to solve hierarchical multi-classification tasks. It
is a decision tree induction algorithm that is based on the notion of
predictive clustering trees and in which a suitable distance measure is
plugged in. Preliminary results with the algorithm on data sets from
functional genomics and text classification are reported and discussed.

1 Introduction

Many data mining algorithms construct predictive models where the target vari-
able is one-dimensional and either nominal (for classification tasks) or numerical
(for regression tasks). Few algorithms can handle the task of making predictions
of a more structural kind. Even relational data mining algorithms usually focus
on learning classification or regression models where structural properties are
used to make the prediction, but the predicted value itself is not structured.

Multi-classification is a simple kind of structure prediction, where the target
variable is a set of classes. The setting occurs relatively frequently, e.g. in docu-
ment classification (a document is typically relevant for several topics, hence it
may belong to several classes). The problem can be tackled by learning separate
models for each class (indicating whether a single instance belongs to a class
or not), but learning a single model for all classes has the advantage that the
total size of the predictive theory is typically smaller, and dependencies between
different classes w.r.t. membership can be taken into account and may even be
explicitated. Advantages of learning a single model for multiple related predic-
tion tasks have been reported several times in the literature (see e.g. [5] for
decision trees, [7, 1] for neural networks, [24] for text classification).

While our setting is one of assigning a set of classes to an instance, we look
in more detail at the case where the classes are ordered in a hierarchy. This



hierarchy concisely conveys relevant information about the similarity and differ-
ences between classes and also expresses the constraint that an object belonging
to a class also belongs to the parent class. Using a hierarchy, a prediction can be
represented as a subtree of the hierarchy with the predicted classes as the leaves
(and internal nodes). This boils down to a special case of prediction of structured
values, an extension of the multi-classification problem, that we call hierarchical
multi-classification. For example, this is useful in document classification when
a document is to be classified into a number of newsgroups: newsgroups indeed
form a hierarchy.

The remainder of this text is structured as follows. In Section 2 we describe
the general setting of distance-based multi-classification, of which hierarchical
multi-classification (Section 3) is a special case. Section 4 briefly reviews the ideas
behind predictive clustering trees, on which our algorithm will be based. Section
5 presents a distance measure that is to be plugged into the decision tree learner
in order to obtain multi-classification. Section 6 presents experiments with this
algorithm. Section 7 discusses related work and Section 8 concludes.

2 Distance-based Multi-classification

Our approach to hierarchical multi-classification is placed in the more general
context of distance-based multi-classification, which we describe first.

In the multi-classification context each individual belongs to one or more
classes, and given a new instance we wish to predict the classes to which it
belongs. An important element here is how to evaluate the quality of predictions.
We distinguish several possibilities, from more general to more specific:

— Cost-based. A cost can be associated with (a) including class 7 in the predic-
tion when it should not be there (CI;); (b) omitting class i when it should be
included (CO;); (c) substituting class i for class j (C'S;;). Costs are positive.

— Distance-based. This is similar to the cost-based approach but imposes the
constraint that CO; = CI; and CS;; = CSj; for all classes ¢ and j (due
to the symmetry of distances.) Such distances are similar to so-called edit
distances.

— Accuracy-based. No substitutions are allowed, they are modelled using in-
clusions and omissions (CI; = CO; and CS;; is undefined). This criterion
amounts to a kind of weighted average accuracy with which the different
classes are predicted.

Example 1. Consider the task of predicting for a given article for which news-
groups it is relevant. Assume the relevant newsgroups for some article are {rec.autos,
science.electronics}. How good are the predictions {rec.autos, science},
{rec, science.electronics} and {rec.sport, science.electronics} re-
spectively? Is the cost of making a more vague prediction (rec instead of rec. autos)
higher than that of making a more specific but wrong guess (rec.sport)? Is a
mistake in classification on high level worse than one on a lower level? Costs will
have to be chosen based on the answers to these questions, which may depend

on the application.



Ezample 2. Now consider the task of composing an ice-cream cone for someone.
We have to choose a set of flavours that the person will like. There might be
a penalty for omitting chocolate, which the person likes. Assume the person
likes strawberry, and would normally not choose raspberry. Given the similar-
ity between raspberry and strawberry, the penalty for substituting raspberry
for strawberry is probably smaller than the sum of the penalties for including
raspberry and omitting strawberry. This situation cannot be modelled using the
accuracy-based method.

The current paper studies hierarchical multi-classification in which the dis-
tances between classes are defined by their position in a hierarchy. This is an
instance of the “distance-based” setting mentioned above.

3 Hierarchical Multi-classification

We represent a hierarchy on a set of values C' as a tree, defined by a root element
and a parent function that maps children of a tree node onto the node (it is not
defined for the root element). A wvalid set is a set of values that is closed with
respect to the parent function, i.e., if ¢ € S then parent(c) € S or ¢ is the root.
2¢ denotes the powerset of C and V(C) C 2¢ denotes the set of valid sets in C.
The problem of hierarchical multi-classification can then be stated as follows.
Given:

— an instance space X

— a class space C

— a hierarchy on C'

— a set of examples D C X x V(C)
— a quality criterion @

Find: a function h : X — V(C) that maps an instance = onto a valid set of
classes S, so that h maximizes the quality criterion Q).

If we represent the hierarchy as a tree, then a single prediction is a subtree
(in the graph sense) of it. Figure 1 illustrates this. In the case of predicting a
single leaf class in the hierarchy, the subtree reduces to a single branch.

We assume every subtree in a hierarchy is a semantically correct and mean-
ingful prediction. For specific applications, some constraints may hold, for ex-
ample that some classes are incompatible. If so that information can better be
exploited when making a prediction. We do not consider this possibility here.

Putting hierarchical multi-classification into the distance-based context means
we need a method for deriving a distance from the hierarchy. Intuitively, the
distance between two classes is smaller if they are closer to each other in the
hierarchy. Further, the siblings of a node should be equidistant, and the distance
from a node to its parent is the same for all the nodes on a given level. Some
natural distance definitions fulfilling these criteria will be given below.

The quality criterion () can but need not be based on the distance. For
instance, it could be just the average accuracy with which all the different
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Fig.1. To the left, a class hierarchy; to the right, the prediction
{rec.sport, science.electronics} is depicted, which forms a subtree of the hier-
archy (indicated in bold).

hockey

classes are predicted, or it could take into account the fact that predicting
rec.sport.hockey is a smaller mistake for an article that belongs to class
rec.sport.baseball than for an article that is not about sport at all.

We finally remark that by representing the prediction as a subtree of the
hierarchy, the natural constraints on class membership (anything belonging to
A.B.C automatically belongs to A.B and to A) are automatically honoured.
This would not be guaranteed if independent models were learnt for all different
classes.

Now that the problem is clearly defined, the question is how to construct an
algorithm that learns predictive models for this setting. In this paper we follow
the predictive clustering approach presented in [4], for which it has been argued
that it provides a very general approach to predictive modelling.

4 Predictive Clustering Trees

A variety of algorithms for predictive modeling exists. Among the better known
are algorithms that induce decision trees [6, 18]. Compared to other well-known
techniques such as neural networks [2], decision trees have the advantage of
being more interpretable: they clearly explicitate the factors that influence the
outcome most strongly.

Decision trees are most often used in the context of classification or single-
target regression; i.e., they represent a model in which the value of a single
variable is predicted. However, as a decision tree naturally identifies partitions
of the data (course-grained at the top of the tree, fine-grained at the bottom), one
can also consider a tree as a hierarchy of clusters [12]. A good cluster hierarchy
is one in which individuals that are in the same cluster are also similar with
respect to a number of observable properties.

This leads to a simple method for building trees that allow the prediction of
multiple target attributes at once. If we can define a distance measure on tuples
of target variable values, we can build decision trees for multi-target prediction.
Similarly, if a distance on structured target values is defined, we can build de-
cision trees for prediction of structural target variables. The methodology has
been used successfully for a variety of applications such as conceptual clustering
[4], simultaneous prediction of multiple parameters [5], and ranking tasks [23].



The algorithm for inducing such trees is essentially a standard TDIDT (Top-
down induction of decision trees) algorithm such as ID3 [17]. The general idea is
to recursively partition a set of data into clusters in such a way that the intra-
cluster variance is minimized. (In other words, the heuristic for selecting tests
to include in a node of the tree is based on this variance.) Intra-cluster variance
is defined as the sum of squared distances between the members of the cluster
and its prototype p, where the latter is defined as p = argming Y, d(z;, q)?, i.e.
roughly the point that is closest to all the instances in the cluster, according to
the distance defined. This prototype may not be a valid prediction. For instance
for 0-1 prediction the prototype could be the mean of all target values, e.g. 0.8,
but when making a prediction for a specific instance this has to be converted
into a valid prediction (0 or 1). The result of the induction process is a decision
tree in which each leaf contains (a prediction derived from) the prototype of the
examples covered by that leaf.

A detailed description of the algorithm can be found in [4]. The main point
to be made here is that the proposed method for inducing predictive clustering
trees relies entirely on the definition of the distance measure, the prototypes,
and the mapping of prototypes onto valid predictions. These issues are the focus
of the next section.

5 A distance measure

We introduce a distance measure that is used here for the specific purpose of
hierarchical multi-classification, but is in fact more generally useful for distance-
based multi-classification. The idea is that from distances between individual
classes, which are input to the method, a distance measure between sets of
classes is defined that is compatible with these individual distances. This is done
by mapping the sets onto vectors in a Euclidean space where the individual
classes are base vectors. Depending on the given distances, the base may or may
not be orthogonal. (Intuitively, when two classes are close together their base
vectors will point more or less in the same direction.)

We first discuss some alternatives for deriving a distance between classes
from a hierarchy, next we discuss how it can be upgraded to a distance between
sets of classes.

5.1 Distance between nodes in a hierarchy

Most of the current work on hierarchical classification considers a distance between
2 nodes of a tree. Examples are:

— shortest path distance (SPD) : considering the tree as a graph, the number
of edges on the shortest path between two nodes is the distance between the
nodes. It can be computed as depth(ni) + depth(na) — 2depth(n) with n the
deepest common ancestor (DCA) of ny and na.



— weighted shortest path distance (WSPD) : similar to the previous one,
but now edges have weights. Edges deeper in the tree typically have lower
weights.

— weighted penalty (WP): weights are assigned to nodes; the distance between
two nodes is the weight of their DCA. Nodes deeper in the tree have lower
weights.

The difference between WSPD and WP distances is mainly that the first type
focuses on dissimilarities between nodes (the parts under their DCA), the second
on similarities (the part above their DCA - the larger this is, the smaller the
DCA'’s weight). Note that these distance measures generalise some of those used
in the ILP context, e.g. [15].

Which of the above (or other) distances should be used will normally depend
on the application; it is not our intention to make general claims about them
here. Our method is sufficiently flexible to cater for a wide variety of distance
measures, and hence for a wide range of applications.

While we assume that a distance measure for individual nodes in a tree is
given, we actually need one for sets of nodes. We continue to describe how the
distance between nodes is upgraded to a distance between sets of nodes (or
rather, “combinations” of nodes, as we shall see).

5.2 Distance between combinations of nodes

We assume we have a finite domain of elements U = {ey,...,e,} (here, the
classes). The metric we need is between subsets of U. Given a metric between
elements of a domain, several metrics between subsets of that domain have been
defined, e.g. the Hausdorff metric and the metric proposed in [19] which is based
on matchings. However, we will use a decision tree algorithm and hence we would
like to be able to compute prototypes efficiently. Since for the existing metrics
on sets it is not straightforward to do that, we will choose an approximative
method that originates in kernel-based methods.

The empty set is also a subset of U and is called o (the origin). We assume
the application allows to define a distance dy between singletons and the origin
(do(es,0)) and between different singletons (do(e;, e;)). Note that these distances
respectively correspond to the earlier mentioned CI; = CO; and CS;; = CSj;.

We follow the procedure proposed in [16]. A set can be converted into a
binary vector where the i-th component indicates whether element e; is in the
set (1) or not (0). Note that the singletons {e;} are base vectors e; in this space
(with the i-th component 1 and all other components 0).

In this D-dimensional feature space a kernel and a corresponding Euclidean
distance can be defined that is compatible with all assumed distances dy(e;, 0)
and dy(e;, e;). We can then define the function ky : U x U — IR by

Ve e; € U : ko(ei,ej) = = (do(ei, 0)* + do(ej,0)* — do(ei, 5)?)

N =

ko(e;, e;) is the inner product of e; and e; in the Euclidean space.



An element in the feature space RP can be written as a linear combination
Y x;e; of base vectors, such an element is denoted as ¢ and z; is denoted as
¥ (e;). Next, we define a function k : R” x R” — R by

Vi, 02 € RP 1 k(gr,92) = Y di(e)va(es)kolei, e))-

ei,e; €U

As discussed in [16], if k is positive semi-definite (Vi) € R” : k(1,4) > 0), one
can verify that k is a kernel. Also, the metric d : R” x R” — IR induced by k
and defined by d(11,%2) = \/k(wl — 19,11 — 1b2) agrees with dp, i.e.

Vei,ej : d(ei,e]-) = do(ei,ej)

If k is not positive semi-definite, then d(¢,2)? is not always non-negative
and hence d is not a metric. E.g. consider a set X = {a,b,c,d} with do(a,b) =
do(b,c) = do(c,d) = do(d,a) =1, do(a,c) =2 and do(b,d) = 0.1. If an Euclidean
space, then b and d are both in the center of the line connecting a and ¢ (as
do(a,c) = do(a,b) + do(b,c) = do(d,a) + do(c,d)). However, do(b,d) is different
from 0 and it is impossible to map X to an Euclidean space. This is reflected
by the fact that the kernel based on this dy is not positive semi-definite. The
positive eigenvalues of the matrix K are on average still larger in absolute value
than the negative ones as one starts from a basic distance function dy which is
positive for all pairs of base vectors. As discussed in [16], while such a kernel
does not satisfy all required theoretical properties of a metric, it turns out to
behave relatively well in practice (it is not well understood why this is so).

In vector notation, we can say that we have constructed a matrix K with
elements K;; = ko(e;, ;) such that for any two linear combinations ¢x = Xz;e;
and 9y = Yy;e; of elements of U represented as vectors, ¢XTK 1y is their inner
product and d(vx,%y) = (¥x — 1by)T K (1)x — 1y) is the distance between them.

Summarizing, given a distance dy, we can compute a kernel £ and thus define
a Euclidean distance metric d between sums of class values which is compatible
with the given distances in the sense that for all class values e;, e; it holds that
d(e;,ej) = dol(e;i, ej). For sets {e;,,...,e; } and {ej,,...,e; } of class values, we
can then use d(Efn:l €im> D iy €5, ) as a distance between these sets. As we will
show in the next section, it now becomes easy to define prototypes.

5.3 Prototype

In a Euclidean vector space, the prototype of a set of vectors is just the arith-
metic mean of the vectors in the set: X = Y1 | x;/n. It is efficient and easy to
compute. Note that with non-Euclidean distances, such as Manhattan distances,
prototypes are often not uniquely defined or are more difficult to compute.

5.4 Mapping a prototype onto a prediction

Suppose we have learned a decision tree that sorts a new example into one of
its leaves. We can use this tree to make predictions about the class(es) of these



examples. Therefore, we look at the prototype p of the training examples in the
leaf that is assigned to a new example. As discussed in the previous section,
this prototype is a vector in the Euclidean space where the class values were
mapped in. This vector is not necessarily a valid prediction, e.g. if we have a
set of examples {(1,0), (0,1),(0,1)} the mean is (0.33,0.67) and the components
have to be rounded to 0 or 1.

Just rounding all individual components to 0 or 1, whichever is nearest,
does not necessarily give an optimal solution because the base vectors may not
be orthogonal (i.e. there are dependencies between the components). Therefore
we use the following iterative procedure to construct a valid prediction. We
start with a valid prediction P that is just the empty set, and in consecutive
steps greedily add the base vector that maximally decreases the error criterion
>=; d*(P,e;)-p; (with p; the i-th component of the prototype) until no more such
vectors exist.

6 Preliminary Experiments

The experiments we describe here are rather preliminary. We have implemented
one version of the distances mentioned above and run experiments with it on
two easily obtainable data sets, trying to gain some insight in the behaviour of
the proposed method.

6.1 Algorithm

For our experiments we use CLUS!, a system designed for building predictive
clustering trees as discussed in Section 4. (It is in fact a propositional version of
the Tilde system [3,4].) We have added a clustering mode to CLUS based on the
distance described in Section 5.2. For the distance between base vectors we use
a weighted shortest path distance. The weights used in this distance decrease
exponentially with the hierarchy depth, i.e. w; = wd, with w; the weight of a
given edge, d the depth of the node from which the edge originates and wg some
parameter. In our experiments we have arbitrarily chosen wg = 0.75.

6.2 Text Classification

Experimental Setup In our first experiment we apply CLUS to the task of
classifying Usenet newsgroup articles. (We are aware that decision trees are not
an optimal tool for document classification, e.g. support vector machines usually
perform better; but it is still a reasonable application domain when the aim is
to learn something about our approach.)

Articles are always assigned to leaves of the newsgroup hierarchy. Although
articles can belong to multiple newsgroups, in the data set we obtained most
articles belong to a single newsgroup. Therefore this experiment is useful mainly

1 CLus is available from the authors upon request.



comp.graphics rec.autos
comp.os.ms-windows.misc rec.motorcycles
comp.sys.ibm.pc.hardware rec.sport.baseball

comp.sys.mac.hardware rec.sport.hockey
comp.windows.x sci.crypt
talk.politics.guns sci.electronics
talk.politics.mideast sci.med
talk.politics.misc sci.space
talk.religion.misc alt.atheism

soc.religion.christian misc.forsale
Table 1. Usenet newsgroups used in newsgroup data

to investigate the benefit of using hierarchical information when building a multi-
classification tree. We compare two settings of CLUS: hierarchical (1) and flat
(2) multi-classification. With “flat” classification we denote the setting where all
leaf classes are equidistant, i.e., no information about the hierarchy is taken into
account.

We use the data set collected by Ken Lang [10]. It contains 20000 articles
taken from 20 different newsgroups. In [10] the data set is used to compare
different algorithms that can perform flat single classification.

Data preparation involved the following. The original hierarchy for this data
set is not ideal in that parts of it degenerate into a flat class space (e.g. the hier-
archy contains only one subclass in the category soc). In order to increase the
hierarchical structure of the class space, we removed the classes alt.atheism,
soc.religion.christianand misc.forsale. Further, cross-posted articles ap-
pear as multiple examples in the data set, but in our setting they should form
a single multi-class example. After removing the above three classes, merging
the cross-posted examples, and cleaning up the data set a bit (e.g. removing
articles with bodies like “unsubscribe”) we end up with a data set containing
16588 examples of which 311 are multi-class.

For each example we selected 1000 features (attributes for CLUS) using the
statistical text processing system RAINBOW [13]. The features were selected using
the information gain criterion and each feature corresponds to the number of
occurrences of a given word in an article. Before passing an article to RAINBOW
we removed all header fields except for the subject, because some header fields
may reveal the class of the article.

Experiments were then run as follows. We first randomly selected 50% of
the available examples as test examples. From the remaining 50% we sampled
training sets of different sizes ranging from 100 to 8000 examples. For each
training set we compare: (1) “hierarchical”: CLUS using the distances as defined
by the newsgroup hierarchy; and (2) “flat”: CLUS using a distance criterion where
all classes are equidistant (this was simulated by redefining the hierarchy so that
all classes are on one level, directly below the root.) The results are evaluated
by calculating the mean squared weighted shortest path distance -, d*(a;, p;)
(MSWSP) between the actual a; and predicted p; set of classes over the test



Newsgroup classification

N

-

MSWSP, w,=0.75
(98] S W (=)}

[N}

0O HIERARCHICAL
A FLAT
O DEFAULT

0
100 175 250 500 1000 2000 5000 8000
Training set size

Fig. 2. Evolution of shortest path error criterion with training set size. Hierarchical
clustering consistently performs slightly better than flat clustering.

examples, according to the true hierarchy. The whole experiment is repeated 10
times and the average results are reported.

Results Figure 2 shows the average results obtained. It also shows a line marked
with “default” which corresponds to always predicting the set of classes corres-
ponding to the prototype of the training set. (This corresponds to using a decision
tree with just one leaf.)

For training sets with a low number of examples, the “flat” method scores
worse compared to both “hierarchical” and “default”. It scores worse than “de-
fault” because it generates sub-optimal predictions, i.e. even if it does not intro-
duce any test, and it would just predict one leaf, then the set of classes predicted
in this leaf would differ from “default” because it does not use hierarchical in-
formation when calculating prototypes.

If the number of training examples increases then the “hierarchical” approach
is always slightly better, compared to the “flat” approach. That it is only slightly
better is somewhat disappointing, given that the hierarchical approach uses much
more relevant information than the flat approach (in fact its heuristic is directly
related to the error criterion, while the flat approach has to use a rough approx-
imation). A possible explanation for the small difference is that the hierarchy
for this data set is rather small, so that the “flat” method can find useful tests
without depending on any hierarchical information. An obvious extension to this
work is of course to retrieve a larger hierarchy from the Usenet newsgroups and
repeat the experiment.

Note that we only allow the algorithm to predict leaves of the hierarchy. This
means that it can only predict comp.graphics and not comp. If we allow also



internal nodes, then the MSWSP could be decreased further (for “hierarchical”).
We did not do this here because the internal nodes are not valid newsgroups.

6.3 Functional Genomics

Experimental Setup In our second experiment we apply CLUS to the multi-
classification task introduced by Clare and King [8]. They present a modified
version of the C4.5 decision tree learner [18] that is capable of learning multi-
classification trees but does not exploit any hierarchical information.

The phenotype data set? contains 1461 examples. Each example corresponds
to a mutant strain that is obtained by removing a specific gene from a cell (in
this case yeast S. cerevisiae cells). The mutant cells are grown under different
conditions or growth media. Each growth medium corresponds to one of the
69 attributes of the data set. Each attribute is three-valued: “wild-type” means
that the growth of the mutant is equal to that of the original cells (the wild-
type), “sensitive” means less growth for the mutant and “resistance” means
better growth for the mutant. The data set has a lot of missing values (84.41%
of all attribute values is missing) because not all possible growth experiments
have been carried out. Each example has also an attribute “notn” which is the
discretized number of growth media where the mutant differs from the wild
type. The target value is the set of functional classes of the removed gene. This
functional class belongs to a hierarchy of depth 4 with 13 classes at level one
(e.g. “metabolism”, “energy”, “transcription”, ...) and 162 leaves.

In [8] a resampling approach is used to find accurate and stable rules, and
some selected rules are presented. In our preliminary experiment we use just one
train/test split (50% of the examples each). We use CLUS with the hierarchical
multi-classification setting to build a model on the training set and see how this
compares with some of the rules presented in [8].

Results Figure 3 shows a part of the clustering tree we obtained. The tree
is very small: it contains only two tests. Apparently few tests are considered
significant, probably because of the huge number of missing values in the data.
Crus shows for each test (i.e. lines 1 and 2 of Figure 3 ) the percentage
of examples for which the test succeeds and the percentage of missing values
for the attribute in the test. For each leaf it shows (after “size”) the expected
number of training examples and test examples in the leaf®, and the number of
test examples that certainly belong to the leaf (i.e. that have no missing values
for the attributes used in the tests above the leaf). Furthermore for each leaf
it outputs a list of classes with their expected frequency among test examples
possibly in the leaf, test examples certainly in the leaf, and all test examples.
For instance, the first leaf covers examples for which calcofluor white =
resistance and notn = 1. The expected number of test examples in this leaf

% Available at http://users.aber.ac.uk/ajc99/phenotype/
3 These can be real numbers because examples with missing values belong only with
a certain probability to the leaf.



1 calcofluor_white = resistance (2.3%) (miss: 26.9%)
2 +--yes: notn = 1 (57.3}) (miss: 0%)

3 | +--yes: size: 7.8, 5.1, 2

4 | | [1: 0.5898, 1, 0.3292]

5 | | [1/5: 0.4485, 1, 0.1311]

6 | | [1/5/1: 0.2448, 0.5, 0.0915]
7 | | [1/5/4: 0.1992, 0.5, 0.0383]
8 | | L.

9 | |

10 | +--no: size: 5.8, 6, 5

11 | .

12 | [9: 0.3355, 0.4, 0.0779]

13 1| [9/1: 0.3317, 0.4, 0.0601]

14 | R

15 |

16 +--no: size: 570.3, 718.8, 545

17 [1: 0.325, 0.3211, 0.3292]

18

Fig. 3. A clustering tree grown on the phenotype data.

is 5.1, and there are 2 test examples for which we are certain they belong in this
leaf. The information on class 1/5 (C-compound and carbohydrate metabolism)
indicates that 44.85% of the examples sorted in this leaf belong to class 1/5.
Of the two examples that certainly belong in this leaf, both (100%) belong
to class 1/5. In the whole test set only 13.11% belongs to class 1/5, so for
two random examples in the test set there would be about a 1.7% chance that
both are in class 1/5. Thus the rule “if calcofluor_white=resistance and notn=1
then the gene has function 1/5” is validated with high significance. Even if no
examples were guaranteed to belong to the leaf, we could still see that among
all the examples that may or may not belong to the leaf (weight 5.1) there is an
increased percentage that belongs to class 1/5 (44.85% compared to 13.11%).

The accuracy and confidence of the above rule is comparable to that of the
rules presented in [8]. They present e.g. the following rule: “If the gene is resistant
to calcofluor white then its class is 9/1: biogenesis of cell wall (cell envelope)”.
The single condition in this rule corresponds to the condition in the top node of
our tree. The rule covers on average 6.7 examples with their resampling strategy,
and 43.8% of these examples have class 9/1 (compared to 9.5% in the whole data
set) [8].

Note that by predicting classes at one single level of the hierarchy, it is
difficult to see whether the condition is really related to class 9/1, or rather
to its superclass 9 or one of its subclasses 9/1/z. Our tree, on the other hand,
gives information for classes on different levels of the hierarchy, e.g. 1, 1/5,
1/5/1. Statistics for a class can be compared to those of its subclasses to see at
which level the deviations truly occur. For instance, looking at the first leaf in
Figure 3: the deviation for class 1 (all of the certainly covered examples belong



to it, instead of 33%) can entirely be attributed to class 1/5 (all certainly covered
examples belong to 1/5), but the deviation for 1/5 cannot be attributed to a
single of its subclasses (1/5/1 and 1/5/4 both cover one example). In our current
implementation it is left to the user to perform such comparisons, but it could
easily be automated.

7 Related work

Several authors have generalised decision trees to the multi-classification setting,
see e.g. Suzuki et al.’s bloomy decision trees [22] and the functional genomics
application by Clare and King who present a multi-classification upgrade of C4.5
[8]. In both cases the notion of class entropy is extended to cover multiclassi-
fication. The main difference with our approach is that our clustering approach
naturally allows us to take into account hierarchical information.

Hierarchical approaches in the area of text classification include [24] (a single-
class approach based on association rules) and [11] (which builds a separate
predictive model for each node). We are not aware of existing approaches that
learn a single model in a context that is both hierarchical and multi-class.

Prediction of structural information is to some extent related to case-based
reasoning, which can be seen as an extension of instance-based learning to the
structural prediction setting (see e.g. [14]). Other work on structure prediction
includes Ramon and De Raedt’s “instance based function learning” [21].

The distance measure we propose is not the only possible one; as mentioned
before many distance measures for structural values have been proposed, see e.g.
[15,9,20].

8 Conclusions

We have discussed the task of hierarchical multi-classification, which extends
both multi-classification and hierarchical classification, and which we believe to
cover an interesting range of applications. We have presented an algorithm that
extends the decision tree approach towards hierarchical multi-classification. The
main assumption in this approach is that from a hierarchy, a natural distance
between elements of the hierarchy can be defined. Thus, the approach is a special
case of a more general distance-based approach to multi-classification.

We have experimentally validated our approach on two different data sets,
one in the area of document classification and one in the area of functional ge-
nomics. Both data sets turn out to be somewhat limited with respect to the
information they may give us: the first one has a very simple hierarchy and con-
tains few instances with multiple classes; the other has relatively few examples
with much missing values, compared to the complexity of the hierarchy. The ex-
periments give some indication as to the usefulness of our approach (especially
on the functional genomics data set our interpretation of the results suggests
this is a promising approach), but it is clear that more experiments are needed.



Further work will obviously include a more thorough evaluation of the ap-
proach on a variety of test sets, as well as an evaluation of which distances work
well in which application domains (the ones we used here were relatively ad hoc).
We expect to continue to focus our attention on decision tree induction, but our
approach could also be extended to e.g. rule based learners. An obvious further
direction of research is incorporating the proposed kernel in a support vector ma-
chine, and see to what extent the performance of SVM’s for text classification
could improve through the use of hierarchical information.

Besides hierarchical multi-classification, this paper also points to a possible
direction of research regarding the more general problem of prediction of sets of
values when a distance measure between individual values is defined, or more
generally a cost for certain types of errors.
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