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Abstract

One of the most powerful and widely ac-
cepted analytical formalisms for modeling bi-
ological and physical systems is that of the
partial differential equation (PDE). Estab-
lishing an acceptable PDE model for a dy-
namic system occupies a major portion of the
work of the mathematical modeler. There are
two main aspects to this activity. First, an
appropriate structure has to be determined
for the equations involved (the model iden-
tification problem). Second, acceptably ac-
curate values for parameters are to be deter-
mined (the parameter estimation problem).
Of these, the first is more challenging, and
is the focus of this paper. We propose a
method for discovering the structure of PDE
models from example behavior. For simple
PDE models, we illustrate that a straight-
forward adaptation of existing equation dis-
covery methods is sufficient. However, com-
plex PDE models require a more sophisti-
cated approach: a two-stage method is pro-
posed in the paper. The efficacy of the ap-
proach is demonstrated initially by rediscov-
ering the PDE models for several artificial
problems. We also use it to obtain the struc-
ture of the classic FitzHugh-Nagumo model.
This represents a very wide class of biological
systems, making the model discovery method
of interest to scientists concerned with the en-
terprise of obtaining a mathematical under-
standing of dynamic processes occurring in
the life sciences.

1. Introduction

The celebrated work of Alan Hodgkin and Andrew
Huxley (Nobelstiftelsen, 1972; Hodgkin & Huxley,
1952) examined the conductance of sodium and potas-
sium ions across the cell membrane when the home-
ostasis of the cell is disturbed by some external stim-
ulus. This causes a brief reversal in a nerve cell’s
electrical polarization; this phenomenon, known as
an “action potential” results in the transmission of
an impulse along a nerve axon. The set of simul-
taneous partial differential equations developed by
Hodgkin and Huxley to model this behavior embodies
principles applicable also to the impulses in muscles.
The work remains a milestone on the road towards
the understanding of the nature of excitability, and
laid the foundations of modern computational neu-
roscience. It is also an early demonstration of what
has since become one of the most powerful and widely
accepted analytical formalisms for modeling biologi-
cal systems: the partial differential equation (PDE).
PDEs are now used routinely to model: physiologi-
cal transport processes such as gas exchange mecha-
nisms and fluid flow in arteries; predator-prey behav-
ior; the movement and growth of carcinogenic cells;
viral infection in humans; animal coat patterns; fluid-
flow in arteries; nerve-transmission, etc. (Murray,
1993). It is these kinds of models that are envisaged
in the Physiome Project, which seeks to utilize data
obtained from sequencing the human genome to pro-
vide “...a quantitative description of the physiologi-
cal dynamics or functions of the intact organism” (see
http://www.physiome.org/).



Obtaining a PDE model for experimental observations
is not easy. Often, the physical processes involved are
known at the outset. What is less clear is which of
these are the most important. For example, in exam-
ining oxygen transport to red blood cells, the phys-
ical processes are convection, diffusion and chemical
reaction. In fact, convection makes a negligible contri-
bution and reaction is only important for sick lungs.
Once it is known that only the diffusion term is impor-
tant, parameters such as the diffusion coefficient can
then by found relatively easily. Currently, there is very
little by way of automated assistance for identifying
the key physical processes. Model-construction pro-
ceeds on a trial-and-error basis: the scientist selects
those believed to be important, constructs a model
and sees if solutions match the observed data. If not,
the procedure is repeated until an adequate model
is found. This paper describes an automated tech-
nique, named PADLES!, aimed at assisting this pro-
cess. Given data, PADLES extracts the structures of
PDE models that may prove adequate, i.e., yield good
models for the data when instantiated with appro-
priate coefficients. It adapts existing grammar-based
equation-learning methods to achieve this.

The paper is organized as follows. Background con-
cepts of partial differential equations and equation dis-
covery are briefly presented in Section 2. In Section 3,
a straightforward extension of the existing equation
discovery methods for discovering PDE structure is
presented. Section 4 first presents a more sophisti-
cated two-stage method for discovering the structure
of complex PDE models. It then demonstrates the use
of the method for extracting the structure of two PDE
models. The last section summarizes the paper and
gives some directions for further work.

2. Background
2.1 Partial Differential Equations

Differential equations are used to describe the behavior
of dynamic systems, i.e., systems whose state changes
over time. In ordinary differential equations (ODEs),
time is the only dimension along which change of state
is considered. Partial differential equations (PDEs)
consider change of state along several dimensions, e.g.,
time and space.

Consider first a function f of one-variable (time) f(t).
The (ordinary) derivative of f with respect to ¢ is de-
fined as

!The acronym PADLES stands for “PArtial Differential.
Equations Structure” discovery assistant.

df J(t+h) = f(t)
TR h ‘

Consider a two-dimensional function u = wu(z,t),
i.e., a function of two independent variables x (one-
dimensional space) and ¢ (time). The partial deriva-
tive of w with respect to z is defined as

Ou . u(z+h,t)—u(z,t)
dr koo h

The functions g—; and 2% are the first-order partial

at

derivatives of u. The second-order ones are ‘32712‘ =
2 2

7z (72), o> and 57 = 52(57) = 5 (5%)-
A partial differential equation (PDE) is an equation in-
volving one or more partial derivatives of an unknown
function of several variables. The order of a PDE is
the order of the highest-order derivative that appears
in the equation. An example of a first-order PDE is the
non-linear first-order wave equation %—? + u% =0 and
an example of a second-order PDE is the second-order
wave equation % - % =0.
Given a model of a dynamic system in the form of
an ODE, the behavior of the system can be simu-
lated/derived by solving the ODE. To solve an ODE,
an initial state has to be provided. A general numeri-
cal integration method (such as Runge-Kutta integra-
tion) can then be applied. For PDEs, the situation
is more complicated. Boundary conditions, typically
more complex than just specifying an initial state,
need to be provided. A similar range of choices is
available for performing the time integration as for
ODEs, while the spatial derivatives might typically be
handled using either finite difference or finite element
methods. In either case, a suitable spatial mesh has
to be generated, with, in general, a finer mesh giving
a smaller numerical error of simulation but requiring
a larger computational effort. Many PDE problems,
including the FitzHugh-Nagumo model considered in
this work, are also non-linear and may be very sensi-
tive to slight changes in initial conditions, or display
very different behavior for slight variations in equation
parameters. Where experimental systems display such
complex behavior it can be very difficult to determine
the appropriate form of the equations and may require
lengthy and painstaking observational work in the lab-
oratory, as was the case for Hodgkin and Huxley.

2.2 Discovery of Differential Equations

Equation discovery systems help human experts to dis-
cover natural laws, expressed in the form of equations,
in collections of observed data. Early approaches to



equation discovery, such as BAcON (Langley et al.,
1987), were concerned with rediscovering empirical
laws from the history of different scientific disciplines,
expressed in the form of algebraic equations. Other
systems for discovery of algebraic equations, such as
FAHRENHEIT (Zytkow & Zhu, 1991) and ABACUS
(Falkenheiner & Michalski, 1990) followed. In general,
equation discovery systems search a space of possible
equations to find equations that fit the observed data
well. A recent addition to the family of equation dis-
covery system, SDS (Washio & Motoda, 1997), reduces
the space of algebraic equations searched by making
use of user provided dimensional (scale-type) informa-
tion about the system variables.

LAGRANGE (Dzeroski & Todorovski, 1995) extended
the scope of equation discovery to ordinary differen-
tial equations and thus modeling of dynamic systems.
The basic idea was to introduce the time derivatives
of the systems variables through numerical differenti-
ation and then search for algebraic equations. This
simple approach had two major drawbacks: large er-
rors were introduced by numerical differentiation and
the space of equations considered was too large.

Its successor LAGRAMGE (Todorovski, 1998; Todor-
ovski & Dzeroski, 1997) allows the user to explicitly
define the space of possible equations using a context
free grammar. This is a more general and powerful
formalism for reducing the space of possible equations
than the one used in SDS (Washio & Motoda, 1997).
The problem of large errors introduced by numerical
differentiation is also addressed: numerical integra-
tion is used instead of differentiation for the highest-
order derivatives. LAGRAMGE can also use different
search methods (exhaustive and beam search) as well
as heuristics for more efficient search. The SSE (sum of
squared errors) heuristic is equal to the sum of squared
differences between the measured values and the values
obtained by the discovered equation. The MDL (min-
imal description length) heuristics adds a penalty for
equation complexity (expressed in number of terms)
to the sum of squared errors.

LAGRANGE and LAGRAMGE are strongly related to
system identification methods, used for building mod-
els of dynamic systems based on measured data. How-
ever, mainstream system identification methods work
under the assumption that the structure of the model,
i.e., the form of the equations, is known and are con-
cerned with determining the values of the constant pa-
rameters in the model (Ljung, 1993). Equation discov-
ery systems, on the other hand, do not assume a single
prescribed model structure, but rather explore a space
of possible equation structures. They aim at identi-

fying both an appropriate structure of the equations
and appropriate values of the parameters.

3. A First Approach to PDE Structure
Discovery

3.1 The Approach

Our first approach to re-discovering models in the form
of PDEs mirrors the one taken in LAGRANGE (Dzeroski
& Todorovski, 1995). It is summarized in Table 1.
We first calculate (numerically) the partial derivatives
with respect to the dimensional variables and thus ex-
tend the original data set. We then attempt to dis-
cover algebraic equations on the extended data set
by calling the procedure FINDALGEQN. At present,
we employ LAGRAMGE (Todorovski, 1998; Todorovski
& Dzeroski, 1997) for this purpose. In this simple
approach to PDE structure discovery, other equation
discovery systems, such as SDS (Washio & Motoda,
1997), can be also used. These would disregard the
grammar G.

The input to PDE-SD is a set of measurements along
each of the system variables/functions (F) and dimen-
sion variables (D). For the first-order wave equation
gu y ut =0, F = {u} and D = {t,z}. In addi-
tion, a grammar is provided which specifies the form
of algebraic equations to be considered. A grammar
specifying polynomials was used for the experiments
described in this section.

Table 1. A simple algorithm for discovering the structure
of partial differential equations.

procedure PDE-SD(V = FUD, G)
1 P = set of numerically calculated
partial derivatives of variables in F
with respect to dimensions in D
2 foreach function/variable V € F do

3 FINDALGEQN(VU P, G, V)
4 endfor
endprocedure

Numerical calculation of the partial derivatives is per-
formed by first constructing a multi-dimensional poly-
nomial for each function in F in terms of the variables
in D, then calculating the derivatives of the polynomial
along each of the dimensions. Polynomials of degree 5
were used in our experiments.

3.2 Experiments

3.2.1 STRUCTURE OF EQUATIONS

The focus of the paper is on reconstructing the struc-
ture of PDEs, rather than the values of the constant



parameters appearing in the equations. In order to
evaluate the discovered equations, we extract what we
term the “structure of the equation” (defined below)
and match it against the structure of the original equa-
tions. While we use this criterion in the exploratory
experiments described here, it cannot be used in real-
world domains, where the structure of the model equa-
tions is not known in advance. This criterion should be
replaced with more objective ones, based on simulat-
ing the discovered equations and matching the simu-
lation against the training and/or testing data. To
this end, standard parameter estimation techniques
used for PDEs should be included within the proposed
methods, as opposed to the crude ones currently used
in LAGRAMGE.

We obtain the structure of an equation by (1) rewriting
it in a canonical form such that the right hand side is
0; and (2) abstracting the constant parameters in the
left hand side to generic constants. Thus, the struc-
ture of the equation du/0t = —0.657043 x u Ou/0x
is Oufot + ¢1 x u OufOx = 0. We do not explore
here a logical semantics for this generalization, except
to note that two equations will be said to have the
same structure if there is a trivial rewrite of the ab-
stracted coefficients that makes the structures identi-
cal. For example, Ou/0t = —0.657043 x u Ou/Ox and
Ou /0t = u Ou/dz have the same structure.

3.2.2 RE-DISCOVERY OF SIMPLE PDES

PDE-SD successfully recovers the structure of text-
book equations, e.g., the non-linear first-order wave
equation
ou ou
o " "ow

and the second-order wave equation

=0

Pu o _
otz oxr2
from simulated data.?

2The actual forms in which the equations were re-
discovered are

ou ou
i g— 43 4 o
5 0.657043 u E
and
32u —5 82’11/
— = —1. 1 1 1. —
D 05818 x 10™° + 1.00098 92

The error in the coefficient for the first-order wave equation
is large. In general, numerical calculation of partial deriva-
tives introduces large errors, just like numerical calculation
of ordinary derivatives, especially if the measurements are
sparse (taken on a coarse mesh).

3.2.3 PREDATOR-PREY (PP) MODEL

We next test PDE-SD on a slightly more complex
task. The predator-prey model describes situations
such as the population of rabbits and foxes on an is-
land, where foxes prey on rabbits and rabbits have an
unlimited supply of food. Variable u is the dimension-
less population of the prey, v is the dimensionless pop-
ulation of the predator. This model allows for spatial
variations so that the predators have to move to catch
the prey, and the prey move to evade the predator:

ou 0%u
v v

The training data set was generated with a simple sim-
ulation method for PDEs, using numerical approxima-
tions of the partial derivatives. The simulation step
size in the t-direction is 10~° and the step size in the
z-direction is 0.5. The small time step is needed for
stability of the numerical approximation to the PDE.
The numerical solutions for 4 and v were then saved
at 201 values of z equally spaced between —50 and 50,
and 35 values of ¢, equally spaced between 0 and 34,
giving a total of 201 x35 = 7035 data points. No exter-
nal noise was added to the numerical solution. How-
ever, the training data set is not completely noise free,
due to the numerical error of the simulation method
and saving the simulation results at coarse mesh.

In experiments with LAGRAMGE, both heuristic func-
tions, SSE and MDL, were used in combination with
beam search (width 25) through the space of multivari-
ate polynomial equations. In both cases, the structure
of the 10 best equations differs from the structure of
the original PP equations. Exhaustive search could
not be used in this domain, because of the search space
size (7.5 x 10! equation structures, see Table 7).

PDE-SD thus fails to recover the correct structure
of the predator-prey equations. To understand better
why, let us consider several dimensions of difficulty of
the PDE discovery task.

3.3 On the Complexity of PDE Discovery

The PDE discovery problem becomes more difficult if:
1. we have sparser measurements (coarser mesh),
2. higher-order derivatives are involved, and

3. the degree (of non-linearity) of terms in the equa-
tions is higher.



Items 1 and 2 are related to numerical differentiation
errors, while items 2 and 3 are related to the size of the
space of possible models. The coarser the mesh and the
higher the derivatives order, the larger the errors. The
higher the derivatives order and the degree of terms,
the larger the space of possible equations.

Two difficulties arise when we have a large space of
possible equations: (1) it takes a lot of time to search
this space; and (2) it is more difficult to select the
appropriate equation structure. Given the same data,
the more models we consider, the more likely we are
to find models that fit the data by chance rather than
true regularities. The first difficulty is addressed, and
can be partly overcome, using different search strate-
gies (e.g., beam search). The second difficulty can be
overcome by restricting the space of possible equations.

In the case of the PP model, the size of the space of
polynomial equations that contains the target equa-
tions is of the order 10! (see Table 7); we can iden-
tify this as the reason for the failure of our simple
approach. Greedy (beam) search considers only a frac-
tion of the equations, but misses the original equation
structure. We therefore need to restrict the space of
possible models/equations. In the following section,
we propose a two-stage method for PDE structure dis-
covery: we learn how to restrict the space of possible
equations in the first stage, and search the restricted
space in the second stage.

4. Two-Stage Discovery of Complex
PDE Models

4.1 Padles

A two-stage PDE structure discovery method is pre-
sented in Table 2. In the first stage (lines 1-9), the
problem of discovering PDEs is simplified to the prob-
lem of discovering ODEs. In the second stage (lines
10-14), the most common of the discovered ODE struc-
tures are used to define a grammar and thus reduce the
space of PDEs which is then searched.

In the first stage, the idea is to take slices of the train-
ing data for fixed values of all but one of the dimen-
sional variables (time) and search for ODEs in these
slices. E.g., for the second PP equation for the func-
tion v(¢, z), we take a fixed point in space z = z¢ and
observe the behavior of the function vo(t) = v(¢,z0)
over time. In the slice of the data set where x = x¢, we
try to discover an ODE describing vg(t). We repeat the
process for all different points in space (z;) and obtain
a set of ODEs which approximate the structure of the
original PDE (Ov/8t+c¢; X uv+cy X v+c3 x 8%v/0x> =
0). We expect that the most common ODE structures

in this set will be very close to the structure of the
original PDE. For the second PP equation, the most
common ODE structure is v/t +¢1 X uv+ca xv =0,
which is equivalent to the original PDE structure if we
disregard the partial derivative 8%v/0x?.

Table 2. Two-stage algorithm for discovering the structure
of partial differential equations.

procedure PADLES(V = FUD, G)
foreach tuple of values z of D — {t} do
Fr = {s € F : values(s,D — {t}) = z}
endfor
P = set of numerically calculated
partial derivatives of variables in F
with respect to dimensions in D
foreach variable V € F do
foreach F, do
7 Ev,o = the set of 20 best equations
from FINDODE(F, U {t},G,V)
8 endfor

=W N =

D Ot

9 endfor
10 foreach variable V € F do
11 Let Sy be the set of most-frequent

equation structures in UyEy 4
12 Let Gy be the grammar built upon Sy
13 FINDALGEQN(V U P, Gy, 0V/0t)
14 endfor
endprocedure

In the first step of the algorithm (lines 1-3 in Table 2),
the data set F is partitioned into slices F, with con-
stant values of all dimensions in D except time. For
each system variable in V, ODEs are discovered in each
data slice F,, (lines 6-9). Again, we use LAGRAMGE to
discover ODEs: note that for discovering first-order
ODEs LAGRAMGE does not use numerical calculation
of the time derivatives of system variables (Todorovski,
1998). If we calculate the time derivatives numerically,
an arbitrary equation discovery system can be used in
the first stage.

The 20 best ODEs (10 best according to the SSE
heuristic and 10 best according to the MDL heuris-
tic) are kept (€v,,) for each data slice. Abstracting
the values of the constant parameters in the discov-
ered equations (see Section 3.2.1) the structures of the
equations are extracted. All structures, obtained on
different data slices, are merged and their frequencies
are calculated. Only the most frequent ones are used
in the grammar that determines the PDE structures to
be considered in the second stage (line 11). In partic-
ular, the equation structures with frequencies within
the interval [fmaz/2, fmaz] (fmaz being the frequency
of the most frequent structure) constitute the set Sy .



Table 3. An example Gy grammar.

E — constxVp+S|S

Vo — Ou/dz|0%u/0t? | 0%u/0xdt | D>u/0x>

Vo, — Ov/0x|d*v/0t? | 0%v/0xdt | O%v/dx>

S — constxuxv+constxv|constxuxv]| ...

In the second stage, a grammar Gy is formed using
the equation structures from Sy (line 12). It has three
nonterminal symbols: the start symbol E, defining the
restricted space of PDEs; S, reflecting the most com-
mon ODE structures, discovered in the first-stage ex-
periments; and V},, used to denote partial derivatives
with respect to at least one variable other than time.
An example grammar Gy used to discover the second
PP equation is presented in Table 3. On the right hand
sides of the productions for the non-terminal symbol
S are the equation structures from the set Sy (only
the two most common ones given in Table 3). The
grammar can be easily extended to include an arbi-
trary number of dimensional and system variables with
adding new productions to the nonterminal symbol V},.

The class of PDEs defined by the grammar Gy con-
sists of equations in which the partial derivatives with
respect to at least one dimension other than time are
linearly coupled with other (non-linear) terms. Note
that this restriction on the class of discovered PDEs
is entirely due to the grammar, and can be lifted by
using alternative productions for the symbol E.

Finally, we use an equation discovery method to dis-
cover algebraic equations on the extended data set
(which includes the partial derivatives) within the re-
stricted equation space defined by the grammar Gy
(line 13). Again, LAGRAMGE is the actual engine be-
hind the call FINDALGEQN. Note that in the sec-
ond stage, we have to use an equation discovery sys-
tem that is able to consider different spaces of possible
equations, specified by user defined grammars.

4.2 Experiments
4.2.1 PREDATOR-PREY (PP) MODEL

Here we apply the procedure PADLES to the example
behavior generated by simulating the predator-prey
model described in Section 3.2.3. Disregarding the
partial derivatives, the structure for the first equation
is Ou/Ot+cy Xu+ca xuv+cz xu? = 0 and the structure
for the second equation is Ov/0t+ ¢y X v+ c2 X uv = 0.
We will refer to these as the true ODE structures in
the tables below. The true PDE structure takes into
account the partial derivatives 6%u/dz? and 6%v/0z?.
In the first-stage experiments, the true ODE structures
for both PP equations were ranked best: they were the
most frequent among the ODE structures found.

Table 4. Ranks of the true PDE structures of the Predator-
Prey equations after the second-stage experiments.

EQUATION FOR

HEURISTIC OQu/0t Ov/dt
MDL 2 1
SSE 1 8

The results of the second stage experiments are given
in Table 4. The ranks listed here are the ranks of
the true PDE structure among the 10 best equations
returned by LAGRAMGE according to the error heuris-
tic selected. According to the MDL heuristic, the true
PDE structure of the equation for dv/dt is ranked best,
while the true PDE structure of the equation for du/dt
is ranked second best. We can thus say that the struc-
ture of both PDEs was successfully rediscovered.

Having successfully discovered a moderately complex
PDE model using the two-stage approach, we now turn
to the task of discovering a more complex and practi-
cally relevant PDE model.

4.2.2 FrrzHuGH-Nacumo (FHN) MoDEL

FitzHugh (1961) and Nagumo et al. (1962) inde-
pendently derived simplified versions of the Hodgkin-
Huxley equations which retain the most important bi-
ological features. The form of the FHN equations is

v v
a = @—}—v(v—a)(l—v)—w
ow

where a, b, and d, are constant parameters, and v and
w are functions of time ¢ and distance z. For a given
initial condition (say, a narrow Gaussian pulse), this
system might display any one of three types of behav-
ior: simple decay; a single traveling wave solution; or
multiple traveling wave solutions, determined by the
values of the three parameters. These might corre-
spond, respectively, to a nerve stimulus being inade-
quate to initiate axon firing; a nerve stimulus being
sufficient to initiate a single nerve impulse; and re-
peated nerve firing such as occurs in the sinus node in
the heart.

Table 5. Ranks of the true ODE structures of the FHN
equations after the first-stage experiments.

DATA SET
EQuaTtioN FOR 1 2 3 14243
dv/ot 1 7 6 1
Ow /0t 1 1 1 1




Three behavior traces (data sets) were generated using
numerical simulation of the model. The first data set
was generated using the following values of the con-
stant parameters: a = —0.02, b = 0.005 and d = 3.
The other two data sets were generated using two dif-
ferent initial conditions and the following values for
the constant parameters: a = 0.02, b = 0.005 and
d = 3. The equations were simulated using the same
method as in the PP experiments. The numerical so-
lutions for v and w were then saved at 201 values of z
equally spaced between —100 and 100, and 13 values
of ¢, equally spaced between 0 and 120, giving a total
of 201 x 13 = 2613 data points in each data set. No
external noise was added to the numerical solution.

Disregarding the partial derivative, the structure of
the first FHN equation is 0v/0t + ¢ X w + ¢y X v +
cs3 x v2 + ¢4 x v® = 0. The structure of the second
FHN equation is Qw/dt+c¢; X w + co x v = 0. We will
refer to these as the true ODE structures of the FHN
equations in the tables below. Since all three data sets
were obtained using the same model structure, we can
use the union of equation structures obtained on each
of the three data sets for calculating ODE structure
frequencies (row 14243 in the tables) in the first-stage
experiments.

The results of the first-stage experiments are presented
in Table 5. The figures in this table represent the ranks
of the true ODE structure among all ODE structures
discovered in the first stage. Taking the union of equa-
tions, discovered for all three training data sets, the
true ODE structures of both equations are the most-
frequent ones. From the table, we can conclude that
if we have more than one training data set for the do-
main, it is more robust to merge the ODE structures
discovered on different training data sets.

300

200 ‘ —

100 —

0 20 40 60 80 100

equation structures

Figure 1. The frequencies of the 100 most-frequent equa-
tion structures after the first-stage experiments for the first
FitzHugh-Nagumo equation.

The frequencies of the 100 most-frequent structures af-
ter the first-stage experiments for the first FitzHugh-
Nagumo equation are depicted in Figure 1. It can
be seen from the figure that equation structures’ fre-
quency decays exponentially. The most frequent struc-
ture was discovered 281 times in the first-stage exper-
iments, and there are nine equation structures with
frequencies within the interval [281,281/2 = 141.5],
used in the second-stage experiments.

Table 6. Ranks of the true PDE structure of the FitzHugh-
Nagumo equations the second-stage experiments.

DATA SET
HEURISTIC 1 2 3

Jv/0t  MDL *5 k5 *2
SSE 6 *5 1
Ow/dt MDL 1 1 1
SSE % * %

The summary of the second-stage experiments is pre-
sented in Table 6. The figures in the table represent
the rank of the true PDE equation structure (including
the partial derivatives). The *N means that the true
PDE structure was not among the 10 best as evaluated
by the respective error heuristic (MDL or SSE), but
an otherwise identical structure with one missing term
had rank N. The true PDE structure of the first equa-
tion is discovered in the experiments with the third
(and first) data set using the SSE heuristic. The sec-
ond PDE structure is discovered for all data sets using
the MDL heuristic.

In summary, PADLES successfully discovers the struc-
ture of a complex and practically important PDE
model.

Table 7. Reduction of the equation space complexity.

NUMBER OF EQUATION STRUCTURES

MODEL PDE-SD PADLES
PP 7.5049 x 10*! 161
FHN 3.01872 x 107 189

To understand why PADLES works, consider the re-
duction of the PDE space from PDE-SD to PADLES,
illustrated in Table 7. Column one gives the number
of PDEs that need to be considered by the one-stage
approach using a polynomial grammar, while column
two gives the actual number of PDEs considered in the
second stage of PADLES. In both domains, the latter
approach considers less than 200 PDEs and the PDE
space is reduced by a factor of over 10°.



5. Concluding Remarks

This paper describes the first steps towards the dis-
covery of an important class of PDEs, mathematical
models that has very wide ranging applications. While
the use of PDE models abound in the physical sciences
and engineering, our motivation has been predomi-
nantly the modeling of biological systems. The need
for quantitative models for biological processes is grow-
ing rapidly, and we expect it to play a significant role
in establishing the kind of mathematical understand-
ing sought from enterprises like the Human Physiome
Project. It is our belief that an automated model dis-
covery method of the form proposed here will greatly
assist the analysis of the large quantities of data ex-
pected to be available for the project.

In this paper, we have presented evidence that “easy”
PDE structures can be extracted using a straightfor-
ward adaptation of an existing methods for finding
equations. It also appears feasible to extract more
complex PDE models using a two-stage procedure that
first obtains ordinary differential equations in order to
restrict the space of possible PDEs.

Much work needs to be done to make the method ac-
ceptable to mathematical biologists. In the short term,
this takes the form of further experiments with more
models and with truly observational data. The sim-
ulated data used here introduces some errors (due to
the numerical error of the PDE simulation method),
which are of a different nature to experimental data.
We would need to establish that the method works ro-
bustly under both conditions. In the longer term, the
technique needs to be properly integrated into the data
analysis and simulation environment in routine use in
the field. This will enable standard techniques for pa-
rameter estimation and sensitivity analysis to be used
in conjunction with model-discovery to yield a proper
scientific assistant.

The work presented in the paper is concerned with as-
sisting the empirical approach to scientific discovery,
where different models are constructed on the trial-
and-error basis to fit observed data. This is in con-
trast with the theoretical approach, where the primi-
tive physical processes involved in the modeled system
are first identified, the model being a deductive con-
sequence of the basic principles about these processes.
Allowing the definition of the space of possible equa-
tions in equation discovery systems is a step towards
incorporating theoretical knowledge into the empiri-
cal approach. Still, much work remains to be done to
bring equation discovery systems closer to the theoret-
ical approach to scientific discovery.
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