Experiments in Meta-Level Learning with ILP
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Abstract. When considering new datasets for analysis with machine
learning algorithms, we encounter the problem of choosing the algorithm
which is best suited for the task at hand. The aim of meta-level learning
is to relate the performance of different machine learning algorithms to
the characteristics of the dataset. The relation is induced on the basis
of empirical data about the performance of machine learning algorithms
on the different datasets.

In the paper, an Inductive Logic Programming (ILP) framework for
meta-level learning is presented. The performance of three machine learn-
ing algorithms (the tree learning system C4.5, the rule learning system
CN2 and the k-NN nearest neighbour classifier) were measured on twenty
datasets from the UCI repository in order to obtain the dataset for meta-
learning. The results of applying ILP on this meta-learning problem are
presented and discussed.

1 Introduction

In the area of machine learning a large number of different algorithms have been
developed. When considering new datasets for analysis using these algorithms,
the problem of choosing the most suitable one(s) occurs. The choose of the
appropriate machine learning algorithm, can be especially time consuming in
the process of knowledge discovery in very large datasets. This problem can be
solved using meta-level machine learning, i.e. by learning to predict how well
each of the machine learning algorithms can perform on the dataset on the basis
of the dataset itself. Using this predictor, users can discard algorithms that are
not suitable for the dataset at hand and save a lot of effort in trying out all the
algorithms.

The concept relating the performances of different machine learning algo-
rithms to the characteristics of the datasets can be induced from empirical data
using an arbitrary machine learning algorithm. The empirical data contain infor-
mation about the performance of different machine learning algorithms on some
set of datasets. In state-of-the-art meta-learning studies the concept is induced
using attribute oriented machine learning algorithms for rule induction [1, 3]. In
order to use such algorithms a fixed set of attributes describing the datasets have



to be chosen. This set usually includes statistical and information-theory mea-
sures [3]. The description of the datasets using a fixed set of attributes can be
problematic in several ways. First, the characteristics of the dataset are always
measured for the whole dataset only, which is much less informative than using
measures for individual attributes. This lack of information can be partly com-
pensated using some advanced measures for the distribution of the data in the
dataset. However, calculating these measures can be more complex then actually
applying some of the machine learning algorithms to the dataset at hand.

Using more powerful formalisms for dataset description can be a way to
surpass these problems. In the paper, we introduce an Inductive Logic Program-
ming (ILP) framework for meta-learning. This framework includes some of the
measures used in previous state-of-the-art meta-level learning studies. But it
also extends the possibilities of describing datasets with the possibility of in-
cluding statistical and information-theory measures for parts of the dataset (for
each attribute and example) and not only the dataset as a whole. Using ILP
learning systems, the concept relating this extended dataset description to the
performance of different machine learning algorithms can be induced. In prelim-
inary experiments with the presented ILP framework, we used the ILP system
FOIL. The performance of three classification algorithms on twenty datasets was
measured and related to the dataset features.

The paper is organized as follows. The meta-learning ILP framework is in-
troduced in Section 2. In Section 3 the preliminary results of the experiments
with thirteen datasets are presented. Section 4 concludes with a discussion on
related work and some directions for further work.

2 Meta-Level Learning: an ILP Framework

In state-of-the-art meta-learning studies, such as [3] and [1], a fixed set of prop-
erties for the whole dataset are used for the dataset description. Considering the
whole dataset at once in calculating the properties can be problematic because
of the mixture of different types of attributes in the dataset. Some standard
statistical measures, such as mean and standard deviation, are used for contin-
uous attributes only, and other, such as median and entropy, are preferred for
discrete attributes in the dataset. All measures used in the propositional for-
malism for dataset description should be well defined for both continuous and
discrete attributes in order to calculate their averages among all the attributes
in the dataset. In the recent study [6] the problem of averaging the measures
among different types of attributes has been addressed. However, the proposi-
tional framework used in the study prevents the use of measures for individual
attributes in the dataset.

In the ILP framework for the dataset description, summarized in Table 1, the
propositional properties are used along with some properties which are calculated
for each attribute in the dataset. Measures used in the framework resemble the
measures used in other meta-learning studies. These include standard simple
measures like number of attributes and examples, some statistical measures for



Table 1. Relations used for description of datasets.

|Re1ation |Description
dataset (D) dataset’s identification
attr(D,A) attribute’s identification

num_of_attrs(D,V)
attr_cont(D,A)
num_of_cont_attrs(D,V)
attr_disc(D,A)

num_of _disc_attrs(D,V)
num_of_bin_attrs(D,V)
num_of_classes(D,V)
class_entropy(D,V)
num_of examples(D,V)

number of attributes
continuous attribute

number of continuous attributes
discrete attribute

number of discrete attributes
number of binary attributes
number of classes

entropy of class

number of examples

values(D,V) mean number of values of discrete attributes
entropy(D,V) mean entropy of discrete attributes
skewness(D,V) mean skewness of continuous attributes
kurtosis(D,V) mean kurtosis of continuous attributes

mean mutual information of class and attributes
percentage of unknown values

number of values of the discrete attribute

the entropy of the discrete attribute

standard deviation of the continuous attribute
skewness of the continuous attribute

kurtosis of the continuous attribute

mutual information of class and attribute
percentage of unknown values of the attribute

mutual_inf (D, V)
perc_of_na_values(D,V)
attr_values(D,A,V)
attr_entropy(D,A,V)
attr_stddev(D,A,V)
attr_skewness(D,A,V)
attr_kurtosis(D,A,V)
attr_class_mutual_inf (D,A,V)
perc_of _attr na values(D,A,V)

continuous attributes (mean, standard deviation, skewness and kurtosis) and
entropy of discrete attributes. The mutual information between attributes and
class is calculated using Siverman’s method [10]. Beside averages among all the
attributes in the dataset, the calculations for each attribute are also used in the
dataset description (the lowest part of Table 1).

3 Experiments

Three different propositional classification algorithms were used in the exper-
iments: tree-learning algorithm C4.5 [8], rule-learning algorithm CN2 with m-
estimate [4,5] and k-nearest neighbour (k-NN) algorithm [10]. These algorithms
were used both for base-level and meta-level learning. For base-level learning,
they were applied to twenty datasets from the UCI Repository of Machine Learn-
ing Databases and Domain Theories [7]. For meta-level learning, the three propo-
sitional algorithms as well as two ILP systems FOIL [9] and TILDE [2] were
applied to the results of base-level learning, as described below.



3.1 Experimental Setting

The measure of performance used in the experiments is the error rate of the
classifier on the unseen examples. For each learning algorithm, the error rate for
each of the twenty datasets was measured using stratified 10-fold cross validation.
The dataset was first partitioned into ten folds with equal sizes and similar class
distributions. The average error rates on unseen examples (over the ten folds)
for twenty datasets are given in Table 2.

Table 2. Average error rates (in percents) of three classification algorithms on twenty
datasets.

Dataset C4.5 CN2 k-NN|Dataset C4.5 CN2 k-NN
australian (15.34 16.50 14.06||bridges-td 17.64 13.73 14.82
bridges-type|44.57 44.28 42.36||chess 0.33 045 3.47
diabetes 27.51 26.06 26.04|/echocardiogram (33.54 36.63 28.19
german 28.90 25.90 27.00||glass 31.27 33.60 29.31
heart 23.31 22.94 17.41||hepatitis 17.90 17.43 15.38
hypothyroid| 0.83 1.13 2.12|/image 3.29 6.54 3.13
iris 5.33 6.68 6.00||labor 21.34 11.01 14.33
lenses 16.67 26.66 30.00||machine 28.19 31.99 30.59
soya 8.05 8.51 16.83||tic-tac-toe 14.83 1.77 4.60
vote 3.72 3.69 10.59||zoo 5.00 591 391

Additionally, the parameters for C4.5 and CN2 were optimized to minimize
the error rate using 10-fold cross validation on the training data of each fold
from the previous stage. Nine parts of the training data were used to build the
classifier. Its error rate was then measured on the remaining part. The parame-
ters that minimize the average error rate over the 10 folds of the training data
were chosen to perform the experiment for measuring the performance of the
classification algorithms on the testing data. The values of two C4.5 parameters
were optimized: minimal number of examples in the leaf node (possible values
from 1 to 5), and tree pruning parameter (from 0% to 100% with step 5%).
In the experiments with CN2 the values of parameter m (0, 0.01, 0.1, 0.2, 0.5,
1, 2, 4, 8, 16, 32, 64, 128) and rule significance level (0%, 95% and 99%) were
optimized. The optimal value of the parameter k (possible values from 1 to 100)
in the experiments with k-NN classifier was chosen using leave-one-out method
as described in [10].

To prepare the data for meta-level learning task, we classified the algorithms
for each of the twenty datasets in two classes: applicable and inapplicable. The
algorithms with low error rates were considered applicable and others were con-
sidered inapplicable. The error rate limit for classification was used as in [3]: the
algorithms with error rates within the interval

[ T miny € min + k - \/ 1T min (1 — errmm)/ntest)

are considered applicable. err,;, denotes the lowest of the three error rates
for the dataset, nses¢ is the number of test examples and k is an error margin



parameter. The classification of the algorithms for k¥ = 0.25 is summarized in
Table 3.

Table 3. Applicability of the machine learning algorithms for twenty datasets.

Dataset C4.5 CN2 k-NN||Dataset C4.5 CN2 k-NN
australian / |[bridges-td v v
bridges-type v vV chess Vv

diabetes v+ |echocardiogram Vv
german v glass i i
heart v hepatitis v v
hypothyroid i image Vv Vv
iris Vv V/ |[labor Vv
lenses i machine Vv Vv
soya v v tic-tac-toe Vv

vote N Z00 v v

We used the ILP system FOIL for the meta-level experiments, along the
base-level learning algorithms. Three different datasets for meta-level learning
were constructed, one for each classification algorithm. The target relations were
appl_c45(D), appl_cn2(D) and appl knn(D) defined as in Table 3. All the re-
lations from Table 1 were used as a background knowledge. The propositional
learning algorithms use the attributes based on the subset of relations from Ta-
ble 3 of the form relation(D,V). In order to evaluate the obtained models,
we used the leave-one-out method. Following this method, we used all but one
examples to build a model, while the remaining example was used for testing.

3.2 Results of the Experiments

We used FOIL in two series of experiments. In the first one (labeled FOIL in the
tables) the default values for the parameters were used. To examine the impor-
tance of newly introduced relations, which can not be included in the experiments
with propositional machine learning system, we also performed another series of
experiments (labeled FOIL-ND in the tables). In this second series, the values of
the parameters are set, so that no determinate literals are included in the model.
The determinate literals in the case of meta-learning are exactly the literals of
the form relation(D,V) used in the propositional experiments.

When using FOIL with default parameters setting, the induced concepts use
the determinate literals only. Thus, the induced concept do not include any of
the newly introduced relations, measuring the properties of individual attributes.
In part, this is due to the heuristics used in FOIL. To surpass this a different
parameters setting was used, so that only indeterminate literals are included in
the concept, if they are available. Still, some of the indeterminate literals used
in our framework (e.g. attr_class mutual_inf(D,A,V)) are defined for all the



Table 4. Concepts induced with ILP system FOIL.

appl_c45
appl_c45(A) :- appl_c45(4) :-
class_entropy(A,B), not (kurtosis(A,_1)),
B>0.991231. attr_entropy(A,B,C), C<=1.
appl_c45(A) :- appl_c45(A) :-
num_of_bin_attrs(A,B), not (entropy(4,_1)),
B>13. attr _kurtosis(A,B,C),
C>10.1512.

appl_c45(A) :-
entropy(A,B), B>2.27248.

appl_cn2
appl_cn2(A) :- appl_cn2(A) :-
class_entropy(A,B), perc_of_attr na values(A,B,C),
perc_of na values(A,C), attr_disc(A,B), €>2.30794.

C>4.70738, B>0.276716.

appl_cn2(A) :-
mutual_inf(A,B),

B>4.32729.
appl_knn

appl knn(4) :- appl knn(A) :-

num_of_attrs(A,B), not (entropy(A,_1)).

num_of _disc_attrs(4,C),

C<=6, B<>C. appl knn(4) :-

skewness (A,B), B<=1.45483.

appl knn(A) :-

values(A,B),

B>4.15385.

datasets and attributes and do not make any discrimination between positive and
negative examples. With heuristics used in FOIL such literals are not induced
in the induced concepts.

The concepts induced with FOIL are presented in Table 4. The only concept
based on the property of a single attribute is the one for the applicability of
CN2. It states that CN2 is applicable to the datasets which contain discrete
attribute with more then 2.3% unknown values. It should be noted that this
concept was induced with FOIL-ND, which gained maximal accuracy in leave-
one-out experiments for CN2 (see Table 6). Another indeterminate literals that
occurs in the concepts are not (entropy (A, 1)) (stating that all attributes in
the dataset A are continuous) and not (kurtosis(4,_1)) (all attributes in A are
discrete).



Table 5. Concepts induced with ILP system TILDE.

appl_c4b
class_entropy(A,C) , C > 0.991231 7
+--yes: yes [9 / 9]
+--no: num_of_bin_attrs(A,D) , D > 13 ?
+--yes: yes [2 / 2]
+--no: no [9 / 9]
appl_cn2
attr kurtosis(A,C,D) , D > 22.7079 ?
+--yes: no [5 / 5]
+--no: attr_class_mutual_inf(A,E,F) , F > 0.576883 7
+--yes: kurtosis(A,G) , G > 3.87752 7
| +--yes: yes [7 / 7]
| +--no: num of _examples(A,H) , H > 270 7
I +--yes: yes [3 / 3]
| +--no: no [3 / 3]
+--no: no [2 / 2]
appl_knn
num_of_attrs(A,C) , C > 19 7
+--yes: no [4 / 4]
+--no: num of examples(A,D) , D > 57 7
+--yes: num_of bin attrs(A,E) , E > 15 7
| +--yes: no [1 / 1]
| +--no: yes [12 / 13]
+--no: no [2 / 2]

The concepts induced with the ILP system TILDE are presented in Table 5.
The only concept based on the property of a single attribute (kurtosis of a single
attribute and mutual information between the class and the attribute) is the one
for the applicability of CN2.

Table 6. Accuracy of the meta-level models measured using leave-one-out method.

Dataset|| C4.5 | CN2 |k-NN|[FOIL[FOIL-ND|[TILDE||default
appl_cdb (|16/20[16/20(14/20{[16/20 7/20][ 18/20| 11/20
appl.en2 | 9/20| 5/20(11/20|| 9/20|  13/20| 9/20|| 0/20
appl_knn| 9/20[11/20| 9/20([10/20  11/20|| 14/20| 12/20
Sum  ||34/60[32/6034/60([35/60]  31/60|| 41/60|| 23/60

Finally, the results of the leave-one-out experiments are summarized in Ta-
ble 6. Please note here, that the model induced in each leave-one-out experiment
can differ from the others (and the ones presented in Tables 4 and 5), but the
accuracy of the classifiers was our primary interest in these experiments. It can



be seen from the table that FOIL has a slightly better and FOIL-ND a compara-
ble accuracy with respect to the propositional machine learning systems. TILDE
outperforms other machine learning systems on two out of three meta-learning
tasks.

4 Discussion

The work presented in the paper extends the work already done in the area of
meta-learning in several ways. First, an ILP framework for meta-level learning is
introduced. It extends the methodology for dataset description used in [3] with
non-propositional constructs which are not allowed when using propositional
classification systems for meta-level learning. ILP framework incorporates mea-
sures for individual attributes in the dataset description. The ILP framework
is also opened for incorporating prior expert knowledge about the applicability
of classification algorithms. Also all the datasets used in the experiments are
public domain and the experiments can be repeated. This was not the case with
the StatLog dataset repository where more then half of the datasets used are
not publicly available. Another improvement is the use of a unified methodol-
ogy for measuring the error rate of different classification algorithms and the
optimization of their parameters.

The ILP framework used in this paper was build to include the measures
used in the state-of-the-art meta-learning studies. It can be extended in several
different ways. Beside including other more complex statistical and information
theory based measures, it can be also extended with the properties measured for
any subset of attributes or examples in the dataset. Individual or set of examples
from the dataset can also be included in the description.

From the preliminary results based on the experiments with only twenty
datasets it is hard to make strong conclusions about the usability of the ILP
framework for meta-level learning. The obtained models can capture some chance
regularities beside the relevant ones. However, the results of the leave-one-out
evaluation method show slight improvement of the classification accuracy when
using an ILP description of the datasets. This improvement should be further
investigated and tested for statistical significance performing experiments for
other datasets from the UCI repository. To obtain a larger dataset for meta-
level learning, experiments with artificial datasets should also be performed in
the future.
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