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Abstract

Domain or background knowledge is often needed in order to solve difficult problems of
learning medical diagnostic rules. Earlier experiments have demonstrated the utility of
background knowledge when learning rules for early diagnosis of rheumatic diseases. A
particular form of background knowledge comprising typical co-occurrences of several
groups of attributes was provided by a medical expert. This paper explores the possibility of
automating the process of acquiring background knowledge of this kind and studies the
utility of such methods in the problem domain of rheumatic diseases. A method based on
function decomposition is proposed that identifies typical co-occurrences for a given set of
attributes. The method is evaluated by comparing the typical co-occurrences it identifies as
well as their contribution to the performance of machine learning algorithms, to the ones
provided by a medical expert. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

When using machine learning to learn medical diagnostic rules from patient
records, it may be desirable to augment the latter with additional diagnostic
knowledge about the particular domain, especially for difficult diagnostic problems.
In machine learning terminology, additional expert knowledge is usually referred to
as background knowledge.

A particular type of expert knowledge specifies which combinations of values
(co-occurrences) of a set (grouping) of attributes have high importance for the
classification problem at hand. These combinations of values are called typical
co-occurrences. An expert would specify the groupings as well as the typical
co-occurrences associated with them.

This paper proposes a technique for computer supported acquisition of typical
co-occurrences and studies its utility in the difficult problem of early diagnosis of
rheumatic diseases [9,14,15]. In this domain, the task is to diagnose patients into
one of eight diagnostic classes, given 16 anamnestic attributes. The difficulty of the
diagnostic problem itself and noise in the data make this a very difficult problem
for machine learning approaches. A more detailed description of the domain can be
found in Section 3. When asked for some additional knowledge about this domain,
a medical expert proposed six groupings (pairs or triples of attributes) and their
typical co-occurrences (characteristic combinations of values). These are given in
Table 4 in Section 3. For each grouping, a new attribute is introduced and added
to the data set, thus resulting in an extended data set to be considered in the
learning process. For a particular patient record (example), this attribute has, as a
value, the typical co-occurrence observed for the patient, if one was indeed
observed, or has the value ‘irrelevant’ otherwise. A rule induction system, such as
CN2 [5], or any attribute-value learning system can subsequently be applied to the
extended learning problem.

To illustrate the concept, let us consider Grouping 2. It relates the attributes
‘spinal pain’ and ‘duration of morning stiffness’ where the typical co-occurrences
are: no spinal pain and morning stiffness up to 1 h, spondylotic pain and morning
stiffness up to 1 h, spondylitic pain and morning stiffness longer than 1 h. An
example rule that uses this grouping and the second co-occurrence as induced from
data by CN2 is given in Table 1.

The background knowledge in the form of typical co-occurrences was shown to
have a positive effect on rule induction for early diagnosis of rheumatic diseases in

Table 1
A rule that makes use of a typical co-occurrence in the domain of diagnosis of rheumatic diseases

IF Duration_of _present_symptoms > 6.5 months

AND Duration_of rheumatic_diseases <5.5 years

AND Number_of _painful _joints >16

AND grouping2(Spinal _pain,Duration_of morning_ stiffness) = ‘spondylotic & up to 1 h’
THEN  Diagnosis = Degenerative _spine_ diseases
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several respects. First, rules induced in the presence of background knowledge
perform better in terms of classification accuracy and information content [15].
Second, it substantially improves the quality of induced rules from a medical point
of view as assessed by a medical expert [15]. Finally, it reduces the effects of noisy
data on the process of rule induction and nearest neighbor classification [9].

The described improvement in performance motivates the use of typical co-occur-
rences when learning medical diagnostic rules. Although the case described above
is, to the best of our knowledge, the only domain for which the use of typical
co-occurrences was documented, attribute groupings are frequently used within the
well-established area of hierarchical decision support systems [20]. The motivation
shared by the two approaches is that of ‘divide-and-conquer’: groupings usually
include only a few attributes and can be regarded as a subproblem which is
sufficiently simple for the expert to express the underlying relationships. In the
multi-attribute decision support system DEX [3], such relationships are expressed as
a tabulated function that generates the value of a new (intermediate) attribute given
the values of the attributes in the grouping. Such a function is tabulated by the
domain expert, who usually defines the value of the new attribute only for the most
representative (typical) combination of attributes’ values. DEX has been success-
fully applied in more than 50 realistic decision making domains. A similar tech-
nique called structured induction was proposed by Shapiro and Niblett [23]. Michie
[16] reports on many successful industrial applications of structured induction.
These two techniques differ from typical co-occurrences in that each co-occurrence
maps to a distinct value of the new attribute, while different combinations of
attributes’ values may share the corresponding value of the new attribute in DEX
and structured induction.

Before proceeding further, let us briefly mention other related work. The domain
of early diagnosis of rheumatic diseases has been first treated with a machine
learning approach by Pirnat et al. [19]. Decision tree based approaches have been
further applied to this domain by Karali¢ and Pirnat [12]. The use of typical
co-occurrences in this domain has been investigated by Lavrac et al. in combination
with a decision tree approach [14] and in combination with a rule induction
approach [15] and by Dzeroski and Lavra¢ [9] in combination with nearest
neighbor classification.

The drawback of the approach by Lavrac¢ et al. [14] is that it relies on typical
co-occurrences that have to be solicited from a medical expert. It is well-known that
direct knowledge acquisition from experts is an arduous and error-prone process
[11]. To provide computer support for this process, the paper proposes a method
for automated acquisition of background knowledge in the form of typical co-oc-
currences. The expert need only specify the groupings, while the associated co-oc-
currences are determined automatically. A method that can identify most relevant
groupings is also described.

The typical co-occurrence acquisition method proposed in this paper uses several
fundamental algorithms from function decomposition. The pioneers of this field are
Ashenhurst [1] and Curtis [7]. They have used function decomposition for the
discovery of Boolean functions. Its potential use within machine learning was first
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a set of attributes
for which to find
typical co-occurrences

set of Step 1 decision y Step 2 partition matrix, Step 3 typical
examples > table > incompatibility graph > co-occurrences

Fig. 1. The entities used and derived by the typical co-occurrence derivation method.

observed by Samuel [21] and Biermann [2]. A recent report of Perkowski et al. [18]
provides a comprehensive survey of the literature on function decomposition. In
this paper, we refer to the decomposition algorithms which use decision tables with
multi-valued attributes and classes which were developed by Zupan et al. [25] and
Bohanec et al. [4].

The remainder of the paper is organized as follows. Section 2 describes the
method for acquisition of typical co-occurrences. Section 3 describes the domain of
early diagnosis of rheumatic diseases, and the background knowledge provided by
the expert. Taking the groupings provided by the expert, we apply the proposed
method to determine the typical co-occurrences. The results of these experiments
are also discussed in Section 3. Section 4 proposes a method for assisting the
domain expert in selecting attribute groupings. Section 5 concludes and outlines
some directions for further work.

2. The method

This section introduces, both formally and through an example, the method that
derives typical co-occurrences for a given set of attributes from a given set of
examples represented as attribute-value vectors with assigned classes. The overall
data-flow of the method is shown in Fig. 1. The method first converts the set of
examples to a decision table (Step 1). Next, decision table decomposition methods
are used to derive a so-called partition matrix (Step 2). Finally, the typical
co-occurrences for a given set of attributes are derived (Step 3), using an approach
based on coloring the incompatibility graph of the partition matrix.

We first give an example of decision table decomposition and introduce the
required decomposition methodology. The description of the method to acquire a
set of typical co-occurrences is given next. For machine learning in medical
domains, the data is usually represented as a set of examples, and we propose a
technique to convert this representation to a decision table, a representation
required by the proposed method. The section concludes with a brief note about the
implementation.

2.1. Decision table decomposition: an example

Suppose we are given a decision table y = F(X) = F(x,,X,,x5) (Table 2) with three
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Table 2
An example decision table

X X2 X3 y

lo lo lo lo
lo med hi med
lo hi lo lo
lo hi hi hi
med med lo med
med hi lo med
med hi hi hi
hi lo lo hi
hi hi lo hi

attributes x,, x,, and x5, and class y, and we want to decompose it to decision
tables G and H, such that y = G(x,,c) and ¢ = H(x,, x;). For this decomposition,
an initial set of attributes X is partitioned to a bound set {x,, x;} used with H
and a free set {x,} used with G. Decomposition requires the introduction of a
new attribute ¢ which depends only on the variables in the bound set.

To derive G and H from F, we first need to represent a decision table with a
partition matrix (Table 3). A partition matrix uses all possible combinations of
attribute values from the bound set as column labels and those from the free set
as row labels. Each column in a partition matrix specifies a behavior of the
function F when the attributes in the bound set are constant. Two elements of a
partition matrix are compatible if they are the same or at least one of them is
unknown (denoted by ‘-’). Two columns are compatible if all of their elements
are pairwise compatible: these columns are considered to represent the same
behavior as function F.

The problem is now to assign labels to the columns of the partition matrix so
that only groups of mutually compatible columns have the same label. Columns
with the same label exhibit the same behavior in respect to F and can use a single
value of the new concept ¢. Label assignment involves the construction of a column

Table 3
Partition matrix for the decision table from Table 2 with free set {x,} and bound set {x,, x5}

X5 lo lo med med hi hi
X, X3 lo hi lo hi lo hi
lo lo — — med lo hi
med — — med — med hi
hi hi — — — hi —

color 3 3 3 2 3 1
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Fig. 2. Incompatibility graph for the partition matrix in Table 3.

incompatibility graph, where columns of the partition matrix are nodes and two
nodes are connected if they are incompatible. Column labels are then assigned
by coloring the incompatibility graph. For our example, the incompatibility
graph with one of the possible optimal colorings is given in Fig. 2.

For better comprehensibility, we interpret the column labels (colors) as fol-
lows: ‘1’ as hi, 2> as med, and ‘3’ as lo . These labels and the partition matrix
straightforwardly determine the function ¢ = H(x,, x;). To determine the func-
tion G(x,, ¢), we look up the annotated partition matrix for all the possible
combinations of x; and c¢. The final result of the decomposition is represented as
a hierarchy of two decision tables in Fig. 3. If we further examine the discovered
functions G and H, we can see that G =« MAX and H < MIN.

2.2. Acquiring typical co-occurrences from a decision table

In the above example, different colors can be assigned to the same column of
a partition matrix while retaining the minimal number of colors. For example,
the column (med,lo ) could be assigned either color 2 or 3, and the column
(lo, hi ) could be assigned any of the three colors used. On the other hand, the
column (lo,lo0 ) could only be assigned a single color due to the incompatibili-
ties with (med, hi ) and (hi, hi ) which are assigned different colors. While only
one distinct behavior exists for (lo, lo ) with respect to F, there exist several for
(med, lo ) and (lo, hi ). The combination (lo,l0 ) of attributes x, and x; thus
tells us more about the behavior of function F and is therefore more typical.
Moreover, the columns that can be assigned only one color form a foundation
for such color assignments and will be called typical columns of the partition
matrix (typical nodes of the incompatibility graph) and will further indicate for
typical co-occurrences of the attributes in the bound set.

Therefore, for a given set of attributes for which we want to derive the typical
co-occurrences (bound set) and for a given decision table, we have to first derive a
corresponding partition matrix and its incompatibility graph. The algorithms for
the construction of the partition matrix and incompatibility graph are described in
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detail in [25]. The typical co-occurrences derivation method subsequently uses the
incompatibility graph and discovers the typical co-occurrences through coloring.
Since graph coloring is an NP-hard problem, the computation time of an ex-
haustive search algorithm is prohibitive even for small graphs with, say, 15
nodes. Instead, we use the Color Influence Method of polynomial complexity
[18]. The Color Influence Method sorts the nodes to color by decreasing connec-
tivity and then assigns to each node a color that is different from the colors of
its neighbors so that a minimal number of colors is used. In this way, the
coloring can have a single or several candidate colors for each node. The num-
ber of these candidate colors is used to determine the typicality of the node. We
use the following definition:

Definition (Typical node n of incompatibility graph 1G) A node nelG is typical
if and only if, in the process of coloring using the Color Influence Method, it
has only one candidate color to be assigned to.

The above definition is used to extend the Color Influence Method to both
color the incompatibility graph and discover typical co-occurrences (Algorithm 1)
at the same time.

T1 c Yy

1o lo lo

lo med med

lo hi hi

med lo med

med hi hi

hi lo hi
o T3 c
lo lo lo
lo hi lo
med lo lo
med hi med
hi lo lo
hi hi hi

Fig. 3. The result of decomposing the decision table from Table 2.
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Algorithm 1: Coloring of an incompatibility graph and selection of typical nodes

Input: incompatibility matrix IG
Output: typical co-occurrences for attributes in bound set

while there are no uncolored nodes in IG do
select the uncolored node nelG with highest connectivity
if there are no colored non-adjacent nodes
or all colored non-adjacent nodes have the same color
then 7 is typical else n is not typical endif
color n with the first free color different from the colors of adjacent nodes
endwhile

Let us illustrate the use of Algorithm 1 on the incompatibility graph from Fig. 2.
The nodes sorted by decreasing connectivity are

(hi, hi ), (med, hi ), (lo,lo ), (hi,lo ), (med,lo ), (lo,hi )

First, node (hi, hi ) is selected, determined to be typical (no other nodes have been
colored yet), and assigned color 1. Next, node (med, hi ) is considered. There are
no colored nodes non-adjacent to it and as a result, this node is typical. Since the
adjacent node (hi, hi ) has color 1, color 2 is assigned to (med, hi ). Similarly,
(lo,lo ) is also typical and colored with color 3 because colors 1 and 2 have
already been used for adjacent nodes (hi,hi ) and (med, hi ). Next, node
(hi,lo ) has a single colored non-adjacent node (lo,lo ) and is thus typical and
colored with the same color 3. The first nontypical node is (med, lo ): it has three
nodes (med, hi ), (lo,lo ), and (hi,lo ) that are non-adjacent to it and use
different colors 2 and 3. Among these, color 3 is then arbitrarily chosen for
(med, lo ). Similarly, node (lo, hi ) is found not to be typical and among three
candidate colors, color 3 is arbitrarily assigned to it. Therefore, among six possible
combinations of attribute values, the algorithm found four typical co-occurrences:
(hi, hi ), (med, hi ), (lo,lo ), and (hi,lo ).

The described method finds a possible set of typical nodes, but it does not
guarantee that this is the only set of its kind. An alternative method that would
search more exhaustively and possibly evaluate all different colorings of the
incompatibility graph may be more complete and propose a different set of typical
co-occurrences. However, its (possibly exponential) complexity would limit its
applicability.

2.3. Derivation of a decision table from a set of examples

The typical co-occurrence derivation method requires domain data in the form of
a decision table. Decision tables require nominal attributes, and for a specific
combination of attribute values, define at most one class. However, data sets from
medical domains often include continuous attributes and may contain several
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examples with the same attribute values but different classes. Therefore, we need a
method that, given a set of domain examples, would derive a corresponding
decision table. For all continuous attributes, we assume that a discretization is
given or can be derived from the examples.

The method is given in Algorithm 2. It searches through the set of examples E
whose attribute values are the same if nominal or discretize to the same value if
continuous. For such sets of examples E’, a majority class value is found and a
corresponding entry is added to the decision table. The examples from E’ are then
removed from E and the process is repeated until there are no more examples in E.

Algorithm 2: Derivation of a decision table from a set of examples

Input: Set of examples E = {¢;}, Discretization for continuous attributes
Output: Decision table DT

while E #
select e;e
find E' = {e,,; ¢, €E} such that
(1) for all discrete attributes, e; has the same value as ¢;
(2) for all continuous attributes, ¢;’s discretized value is the same as ¢;’s
E'E'ule}
¢« a majority class value of the examples in E’
add e; with discretized continuous values and with class ¢ to DT
E<— E\FE'
endwhile

2.4. Implementation

The typical co-occurrences extraction method was implemented as HINT;¢o, an
extension of the Hierarchy Induction Tool HINT [25] for learning concept hier-
archies from examples by decision table decomposition. Both HINT and HINT¢q
run on a variety of UNIX platforms, including HP/UX, SunOS and IRIX.

3. Identifying typical co-occurrences in the early diagnosis of rheumatic diseases

3.1. The domain

The data on early diagnosis of rheumatic diseases used in our experiments
originate from the University Medical Center in Ljubljana [19] and comprise
records on 462 patients. The multitude of over 200 different diagnoses have been
grouped into three, six, eight or 12 diagnostic classes. Our study uses eight
diagnostic classes: degenerative spine diseases, degenerative joint diseases, inflam-
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matory spine diseases, other inflammatory diseases, extraarticular rheumatism,
crystal-induced synovitis, non-specific rheumatic manifestations, and non-rheumatic
diseases.

For each patient, 16 anamnestic attributes are recorded: sex, age, family
anamnesis, duration of present symptoms (in weeks), duration of rheumatic
diseases (in weeks), joint pain (arthrotic, arthritic), number of painful joints,
number of swollen joints, spinal pain (spondylotic, spondylitic), other pain
(headache, pain in muscles, thorax, abdomen, heels), duration of morning stiffness
(in hours), skin manifestations, mucosal manifestations, eye manifestations, other
manifestations, and therapy. The continuous attributes (age, durations and
numbers of joints) have been discretized according to expert suggestions. For the
continuous attributes that appear in groupings, the discretizations can be read out
from Table 4. For example, from Table 4 we can see that the attribute ‘duration of
morning stiffness’ has been discretized into two intervals: up to 1 h and longer than
1 h.

3.2. The background knowledge

In an earlier study [14], a specialist for rheumatic diseases provided his knowl-
edge about typical co-occurrences of six groupings of attributes. The groupings and
the co-occurrences are given in Table 4, where a bullet in the column marked
‘specialist’ and the row marked X means that tuple X is a typical co-occurrence for
the corresponding grouping. For example, grouping 1 relates the attributes ‘joint
pain’ and ‘duration of morning stiffness’, with typical co-occurrences defined by the
expert: no joint pain and morning stiffness up to 1 h, arthrotic pain and morning
stiffness up to 1 h, arthrotic pain and morning stiffness longer than 1 h.

3.3. The experiments

To evaluate our method for typical co-occurrences acquisition, we took the data
set and the six groupings described above, the latter without the typical co-occur-
rences provided by the expert. We then applied our method to produce the typical
co-occurrences. For each grouping, the typical co-occurrences produced by
HINT;co are listed in the column labeled ‘HINTco’ of Table 4. For example,
HINT¢o suggests that the typical co-occurrences for grouping 1 should be: no joint
pain and morning stiffness up to 1 h, arthrotic pain and morning stiffness up to 1
h, arthritic pain and morning stiffness up to 1 h.

The groupings with the new typical co-occurrences suggested by HINT;o were
then provided as background knowledge in addition to the 462 training examples
(patient records). This background knowledge was used to introduce a new
attribute for each grouping (as explained in Section 1). The 462 examples aug-
mented with the six new attributes (thus having in total 22 attributes) were fed to
the rule induction system CN2 [5] and to a nearest neighbor classifier [6,10,24]. The
goal of this was to evaluate the usefulness of the new attributes and in this way the
usefulness of the typical co-occurrences proposed by HINT;ce.
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Table 4
The six groupings and their typical co-occurrences

111

Specialist HINT+co

(1) Joint pain, morning stiffness

No pain, <1 h ) [ ]

Arthrotic, <1 h [ ] ®

Arthritic, <1 h ®

No pain, >1 h

Arthrotic, >1 h

Arthrotic, >1 h [ ]

fexo 2 1

JiSN 0.345 0.353
(2) Spinal pain, morning stiffness

No pain, <1 h [} ®

Spondylotic, <1 h [} [

Spondylitic, <1 h °

No pain, >1 h

Spondylotic, >1 h

Spondylitic, >1 h [}

Jena 3 3

S 0.545 0.643
(3) Sex, other pain

Male no °

Male, muscles °

Male, thorax [ ]

Male, heels [ )

Male, other ®

Female, no ®

Female, other ®

Other 7 combinations

Jenz 1 4

TN 0.080 0.096
(4) Joint pain, spinal pain

No pain, no pain [} ®

Arthrotic, no pain ® ®

Arthritic, no pain [} ®

No pain, spondylotic [ )

Arthrotic, spondylotic ®

Arthritic, spondylotic

No pain, spondylitic [}

Arthrotic, spondylitic

Arthritic, spondylitic [}

Jena 9 8

S 0.908 0.743
(5) Joint pain, spinal pain, painful joints

No pain, no pain, 0 [ ) [

No pain, no pain, 1 <joints<5 °

No pain, spondylotic, 0 [ ) [

No pain, spondylitic, 0 [ °

Arthrotic, no pain, 1 <joints<5 [ )



112 B. Zupan, S. DZeroski / Artificial Intelligence in Medicine 14 (1998) 101-117

Table 4 (Continued)

Specialist HINT1co

Arthrotic, spondylotic, 1 <joints <5 )

Arthrotic, spondylotic, 5 <joints <30 [

Arthritic, no pain, 1 <joints<5 [ °

Arthritic, no pain, 5 <joints <30 [} [

Arthritic, spondylitic, 1 <joints<35 )

Other 25 combinations

Jero 7 9

JNN 0.757 0.834
(6) Swollen joints, painful joints

0,0 ° °

0, 1 <joints<5 [ )

0, 5<joints <30 [ )

0, 30< )

1 <joints <10, 0 [ o

1 <joints<10, 1<joints<5 °

1 <joints <10, S<joints <30 [} ®

I <joints<10, 30<

10<, 0

10<, 1<joints <5

10<, 5<joints<30

10<, 30<

fen I I

JiSN 0.331 0.392

Two metrics were used to evaluate the usefulness of the new attributes. The
number of occurrences of each grouping (i.e. the new attribute corresponding to
that grouping) in the set of rules induced by CN2 is listed in the rows marked f-n..
The higher this number, the more relevant the grouping. The mutual information
between the grouping and the diagnostic class, calculated as a weight for nearest
neighbor classification [24] is listed in the rows marked fyn. The mutual informa-
tion [22] between two random variables is defined as the reduction in uncertainty
concerning the value of one variable that is obtained when the value of the other
variable is known. The mutual information between an attribute and the class tells
us how useful the attribute is for classification: if an attribute provides no
information about the class, the mutual information will be zero. The two measures
have been used in earlier experiments to assess the utility of background knowledge
in machine learning [9,15].

3.4. The results

For groupings 1, 2, 5, and 6, the typical co-occurrences derived by HINT o
correspond reasonably well to those proposed by the specialist for rheumatic
diseases. For these groups, while using the same (groupings 1, 2, and 6) or slightly
higher number of co-occurrences (grouping 5), two thirds or more of the
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Table 5
Number of possible colors for columns of partition matrix of grouping 4

Joint pain, spinal pain No. colors

No pain, no pain
Arthrotic, no pain
Arthritic, no pain

No pain, spondylotic
Arthrotic, spondylotic
Arthritic, spondylotic
No pain, spondylitic
Arthrotic, spondylitic
Arthritic, spondylitic

B W W= — = —

co-occurrences originally proposed by the specialist were discovered by HINT¢o.
This is different to grouping 4, where less than one half of the co-occurrences
match and to grouping 3, where there are no matches.

In terms of the mutual information evaluation metrics fyy, the co-occurrences
derived by HINT;co score higher for all groupings with the exception of group-
ing 4. A similar behavior is observed when the number of appearances in CN2
induced rules f-n, is used as an evaluation metric. Here, HINTco scores equal
or higher for all but the groupings 1 and 4.

Overall, compared to the co-occurrences proposed by the specialist, HINT¢o
performed well for groupings 1, 2, 5, and 6. There are slight differences in the
proposed co-occurrences, which, in turn, contribute to higher evaluation metric
values. For grouping 3, there is a complete mismatch between the co-occurrences
proposed by the specialist and those derived by HINTco. The co-occurrences
derived by HINT;co score higher on both metrics (4 to 1 on f-y,). However, the
weights assigned by mutual information suggest that this grouping might be
substantially less important for classification than the others ( fyn of 0.096 and
0.080).

It is grouping 4 where the of co-occurrences derived by HINT ;<o seem to be less
appropriate than those proposed by the specialist. However, note that for this
grouping the specialist proposed six co-occurrences while HINT <o discovered only
four. Instead of using HINT;¢o to derive only the typical co-occurrences for which
the corresponding number of colors in the partition matrix is one, we can use this
number as a measure of appropriateness for a certain combination of attribute
values to be used as a typical co-occurrence. The lower the number of colors, the
better the corresponding combination. For grouping 4, the number of possible
colors for the columns in the partition matrix is shown in Table 5. It indicates that
(no pain, spondylotic) and (no pain, spondylitic) are the next best candidates for
typical co-occurrences. Interestingly, both are also proposed by the specialist. Their
inclusion to the set of typical co-occurrences derived by HINTco makes this set
very similar to that of the specialist, and also increases the mutual information
weight from 0.743 to 0.887.
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With the above extension, we can therefore conclude that HINT .o discovered
typical co-occurrences that were comparable to those proposed by the expert both
in terms of similarity and usefulness as background knowledge for machine learning.
This is important since HINT;¢o is not meant to be a stand-alone tool for the
unsupervised discovery of background knowledge, but should rather provide support
to the expert by: (1) proposing a set of co-occurrences; and (2) weighting different
combinations of attribute values to indicate how important it is that they are included
in such a set. It would then be up to the expert to decide which of the proposed
co-occurrences are meaningful and should be used.

As an overall evaluation of the typical co-occurrences suggested by HINT o, let
us consider the performance and size of the rules induced by CN2. The size was
measured by the number of rules induced and the total number of rule conditions
used. The performance measures used were the accuracy and information content
(also called information score) [8,13]. The information score is a performance measure
which is not biased by the prior class distribution: it takes into account the difficulty
of the classification problem considered. It accounts for the possibility to achieve high
accuracy easily in domains with a very likely majority class: classifying into the
majority class all the time gives a zero information score.

To assess the performance, we used stratified 10-fold cross-validation [17]. This
divides the data set into 10 sets of approximately equal size and class distribution.
In each experiment, a single set is used for testing the classifier that has been developed
from the remaining nine sets. The performance is subsequently assessed as an average
of 10 experiments. Several experiments were performed that used the same training
and testing data sets but obtained background knowledge differently and used:

1. no background knowledge,

2. typical co-occurrences for groupings as proposed by expert,

3. typical co-occurrences for the same groupings but derived by HINT;¢o from the
complete data set,

4. typical co-occurrences for the same groupings but derived by HINT;co from
training data sets.

The results (Table 6) indicate that both the accuracy and information content are

higher when background knowledge is used. Best performance in terms of accuracy

and information content is observed when typical co-occurrences are derived by

HINT¢o from the complete data set. This, however, means that testing cases are also

taken into account when deriving the typical co-occurences.

A realistic evaluation is obtained only if the typical co-occurrences are derived from
the training examples alone. In this case, the performance is slightly lower, but
comparable to the best performance. Using typical co-occurrences derived by
HINT o from the training examples is clearly beneficial and yields comparable results
as when using typical co-occurrences provided by a medical domain expert.

4. Computer-assisted selection of attribute groupings

In the experiments described above, HINT;¢o assumed that the set of attributes
for which to derive typical co-occurrences was given in advance. A possible extension
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of this approach is to propose not only typical co-occurrences but also the set of
attributes for which the background knowledge in the form of typical co-occur-
rences should be defined. The idea is straightforward and is illustrated with
Algorithm 3. The algorithm examines all groupings of attributes from a candidate
set (e.g. all pairs and triples) and for each grouping derives the set of typical
co-occurrences. Each grouping is then assigned a weight, which estimates the
usefulness of the grouping for classification. The groupings, sorted by decreasing
weight, are then presented to the user who decides which of the proposed group-
ings are meaningful and are in his opinion suitable for use as background
knowledge.

Algorithm 3: Derivation of groups of (two and three) attributes for which back-
ground knowledge in the form of typical co-occurrences might be useful for
machine learning

Input: set of examples
Output: sorted list of attribute groupings with assigned weights

derive a decision table from the set of examples
for all the pairs (and triples) of attributes do
derive the typical co-occurrences
derive the corresponding weight
endfor
sort the groupings by descending weights and present them to the user

We have used this idea to obtain a list of sorted groupings of two attributes
for the data set on early diagnosis of rheumatic diseases. The groupings were
ranked according to the mutual information [22] between the attribute obtained
from the grouping and the diagnostic class. While all five two-attribute groupings
from Table 4 (originally proposed by the expert) ranked in the upper half of the
sorted list of groupings, grouping 4 and grouping 2 were ranked within the best
six groupings, which were:

1. ‘Spinal pain’ and ‘Swollen joints’

2. ‘Number of painful joints’ and ‘Spinal pain’
3. ‘Spinal pain’ and ‘Skin manifestations’

Table 6

Accuracy and information content for rules induced by CN2

Background knowledge Accuracy (%) Inf. content (%) No. rules  No. condition
None 431+5.6 17.5+3.2 277+ 1.4 93.2+4.4
TCO by expert 48.0 +3.3 24.8 +4.7 37.1+£33  113.8+8.8
TCO by HINTy¢q, entire data set 48.7 +4.3 25.7+3.5 36.14+2.5 108.7+8.8
TCO by HINTy¢p, training sets ~ 46.8 + 3.9 24.0+3.3 381+£30 1159462

Means and standard deviations are given as estimated by 10-fold cross validation.



116 B. Zupan, S. DZeroski / Artificial Intelligence in Medicine 14 (1998) 101-117

4. ‘Joint pain’ and ‘Spinal pain’ (grouping 4)

5. ‘Spinal pain’ and ‘Therapy’

6. ‘Spinal pain’ and ‘Morning stiffness’ (grouping 2)

Note that all six highest ranked groupings include ‘Spinal pain’. This may be
contributed to by the high mutual information between the attribute itself and the
class, which is also the highest among all nominal attributes used in the rheumatic
diseases data set.

For an additional experiment, we have used 10-fold cross validation, and for each
training set: (1) let HINT¢o choose six best groupings of two attributes; (2) derive
the typical co-occurrences for these groupings; and (3) used CN2 to build a classifier
whose performance was then assessed on the test set. The obtained accuracy and
information score were 48.0 +3.0% and 26 + 3.8%, respectively. This result is
comparable to the best performance in Table 6.

5. Conclusions

Background knowledge in the form of typical co-occurrences can have a positive
effect on machine learning results in terms of the performance and the quality of
induced rules from the point of view of comprehensibility. We have developed a
method that proposes typical co-occurrences through functional decomposition of
a given set of examples. In an earlier case study that we have re-considered in this
paper, medical diagnosis background knowledge of this type has been completely
specified by a medical expert. Our approach offers the possibility to automate the
background knowledge acquisition process by proposing typical co-occurrences to
the expert, who would then consider them in the light of his expert knowledge.

Experiments indicate that the use of typical co-occurrences identified by our
method improves the performance of machine learning. The overall performance is
comparable to the one obtained by using typical co-occurrences provided by a medical
expert. While potentially useful attribute groupings can also be identified automat-
ically, the involvement of the expert is crucial to obtain more comprehensible
classification rules.

As further work, a more careful evaluation of the background knowledge acquired
through using our method is needed. This should include an evaluation of the quality
of induced rules from a medical point of view. Furthermore, experiments in other
domains with an active involvement of a domain expert in both attribute grouping
and typical co-occurrence selection should be conducted.
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