Learning Multilingual Morphology with Croa

Suresh Manandhar,* Saso Dzeroski,! Tomaz Erjavect

* Intelligent Systems Group, Department of Computer Science, University of York
Y010 5DD, York, U.K.

Suresh@cs.york.ac.uk

t Department for Intelligent Systems, Jozef Stefan Institute
Jamova 39, SI-1000 Ljubljana, Slovenia
Saso.Dzeroski@ijs.si, Tomaz.Erjavec@ijs.si

Abstract. The paper presents the decision list learning system CLOG
and the results of using it to learn nominal inflections of English, Ro-
manian, Czech, Slovene, and Estonian. The dataset used to induce rules
for the synthesis and analysis of the inflectional paradigms of nouns and
adjectives of these languages is the MULTEXT-East multilingual tagged
corpus. The ILP system FOIDL is also applied to the same dataset, and
this paper compares the induction methodology and results of the two
systems. The experiment shows that the accuracy of the two systems
is comparable when using the same training set. However, while FoipL
is, due to efficiency reasons, severely limited in the size of the training
set, CLOG does not suffer from such limitations. With the increase of the
training set size possible with CLOG, it significantly outperforms FoIpL
and learns highly accurate morphological rules.

1 Introduction

Machine learning methods been recently applied to a variety of tasks within
the area of natural language processing [2]. Inductive logic programming (ILP)
systems have been applied to tasks such as learning to parse [6] and learning
part-of-speech tagging [1]. Learning of morphological structure has also been
attempted with the ILP system FoIDL [7], with the original experiment focused
on relatively small samples of English. In subsequent work, FOIDL was used to
learn the synthesis and analysis rules for Slovene nouns [3]. Here, the system was
used to learn morphological rules for producing the inflectional forms of nouns
given the base form (the lemma) as well as for deducing the lemma from these
inflectional forms. Thus, rules for both morphological synthesis and analysis were
learned. While these rules induced by FoIDL had a relatively high accuracy on
smaller datasets, we were severely hampered by the fact that we were unable
to train on larger datasets. This bottleneck is due to the training inefficiency of
FoipL.

In this paper we present a new decision list learning system, CLOG, which is
similar to FOIDL but with a much greater training efficiency, enabling it to train
on larger datasets, and thus achieve significantly better results. Furthermore,
we extend the scope of the experiments to encompas adjectives and nouns of
English, Romanian, Czech, Slovene, and Estonian.

The aim of the paper is to empirically demonstrate that it is possible to
extend current ILP techniques to realistic NL tasks such as morphological rule
learning that require processing of large amounts of data by the use of more
efficient algorithms.

The training and testing data was taken from the MULTEXT-East tagged
corpus [4], and converted to Prolog encoding, as explained in Section 2. CLOG
and FoIDL are used to learn rules for synthesizing and analyzing the noun and
adjective forms of the five languages. An overview of CLOG and a comparison
with FOIDL is given in Section 3. Section 4 describes the MULTEXT-East corpus
experiments with CLOG and FoIDL. Discussed here are the experimental setup,
the induced rules of both systems for the synthesis and the analysis tasks, and
their performance on unseen text. Section 5 concludes with a discussion and
some directions for further work.

2 The Data

The EU MULTEXT-East project [4] developed corpora, lexica and tools for six
Central and East-European languages; the project reports and samples of re-
sults are available at http://nl.ijs.si/ME/. The centerpiece of the corpus is the
novel “1984” by George Orwell, in the English original and translations. For
the experiments reported here, the first three parts of the “1984” were taken
for training, and the fourth part (Appendix: “The Principles of Newspeak”) for
testing.

The “1984” corpus is tokenised, and its words labelled with linguistic an-
notations both in context disambiguated and non-disambiguated forms. The
linguistic annotation of a word contains its lemmas and morphosyntactic de-
scriptions (MSDs). So, for example, the lexical annotation of the Slovene word
¢lanki contains two lemma/MSD pairs: ¢lanek/Ncmpi and élanek/Ncmpn.

The MSDs are structured and more detailed than is commonly assumed for
part-of-speech tags; they are compact string representations of a simplified kind
of feature structures — the formalism and MSD grammar for the MULTEXT-
East languages is defined in [5]. The first letter of a MSD encodes the part of
speech (Noun, Adjective), while the letters following give the value of the position
determined attribute. Each part of speech defines its appropriate attributes and
their values, acting as a kind of feature-structure type or sort. So, for exam-
ple, the MSD Ncmpi expands to PoS:Noun, Type:common, Gender:masculine,
Number:plural, Case:instrumental. It should be noted that in case a certain at-
tribute is not appropriate (1) for a language, (2) for the particular combination
of features, or (3) for the the word in question, this is marked by a hyphen in
the attribute’s position. Estonian nouns, for example, are not marked for gender
and a ‘Noun common (no gender) singular translative’ is written as Nc-s4.

For our experiments triplets were extracted from the tagged corpus, consist-
ing of the word-form itself, and the lexical, undisambiguated lemmas with their
accompanying MSDs, thus using a setting similar to the one prior to tagging.
As mentioned, we considered only the triples with noun and adjective MSDs.

Each triplet gives rise to two examples, one for synthesis and one for analysis.
The examples have the form syn msd (lemma,orth) and ana msd (orth,lemma).
Within the learning setting of inductive logic programming, syn_msd and ana_msd
are relations or predicates, that consist of all pairs (lemma, word-form), resp.
(word-form, lemma) that have the same morphosyntactic description . A set of
rules has to be learned for each of these predicates or concepts.

Encoding-wise, the MSD’s part-of-speech is decapitalised and hyphens are
converted to underscores. The word-forms and lemmas are encoded as lists of
characters, with non-ASCII characters encoded as SGML entities. In this way,
the generated examples comply with Prolog syntax. For illustration, the orthog-
raphy/lemma/MSD triplet élanki/clanek/Ncmpn gives rise to the following two
examples:

syn_nOmpn([ccaron,l,a,n,e,k], [ccaron,l,a,n,k,i]).
ana_nOmpn([ccaron,l,a,n,k,i], [ccaron,l,a,n,e,k]).

Certain attributes have (almost) no effect on the inflectional behaviour of the
word. We generalise over their values in the predicates, and indicate this by a 0
for the value of the vague attribute, as seen above for the collapsing of proper
and common nouns (Nc, Np) to n0.

Below we give the numbers of these generalised MSDs for the complete noun
and adjective paradigms for each of the five languages:

en: 1MSD = 1N+ 0A
ro: 30 MSDs = 15 N + 15 A
et: 58 MSDs = 29 N + 29 A
cs: 91 MSDs = 45 N + 46 A
sl: 108 MSDs = 54 N + 54 A

In English the plural of nouns to account for in both the Noun and the Ad-
jective paradigms, and only this MSD was used for the dataset. For the other
languages complete paradigms were modeled, including the base forms them-
selves. The languages have a varying numbers of MSDs, depending on their
inflectional complexity and the particular choices made in the MSD grammar.
Lowest is Romanian; next comes Estonian, which has a large number of cases
but does not distinguish gender. The two Slavic languages, known for their heavy
inflection (on gender, number, case, animacy and definiteness) are highest.

3 CLOG and Learning of Morphological Rules

CLOG is a system for learning of first-order decision lists. CLOG shares a fair
amount of similarity with Foipbr [7]. Like FoibL, CLOG can learn first-order
decision lists from positive examples only — an important consideration in NLP
applications. CLOG inherits the notion of output completeness from FOIDL to
generate implicit negative examples (see [7]). Let E be an example and @ be the
corresponding query whose refutation should result in an answer substitution

! We need two different relations because the decision list representation restricts the
modes of the predicates to synmsd(+,?) and ana msd(+,7).

that would make @) = E. Let Q' be the actual result of executing Q. Then Q'
is considered to be a negative example if the training set does not contain Q’.
Output completeness is a form of closed world assumption which assumes that
every related “variant” of an example is included in the training set.

Let PTC be the (positive) examples to be covered
Let CPE be the set of covered (positive) examples initially empty
Let DL be the decision list being learnt initially empty
While PTC not empty
DO
Let x be an (arbitrary) example in PTC
Let GC = { (G,0,0,0,0) | G is a clause that covers x }
For each example e in PTC
For each (G,SP,SN,QP,QN) in GC
if G covers e positively
then (G,SP,SN,QP,QN) := (G,SP,SN,QP+1,QN)
else if G covers e negatively
then (G,SP,SN,QP,QN) := (G,SP,SN,QP,QN+1) endif
endif
For each example e in CPE
For each (G,SP,SN,QP,QN) in GC
if G covers e positively
then (G,SP,SN,QP,QN) := (G,SP+1,SN,QP,QN)
else if G covers e negatively
then (G,SP,SN,QP,QN) := (G,SP,SN+1,QP,QN) endif
endif
Let Best € GC be such that gain(BEST) is maximum
For each example e in PTC
if Best covers e positively
then
CPE := CPE U {e}
PTC := PTC — {e}
endif
For each example e in CPE
if Best covers e negatively
then
CPE := CPE — {e}
PTC := PTC U {e}
endif
Add Best to top of DL
ENDDO

Fig. 1. CLoG algorithm

Our experiments show that CLOG is significantly more efficient than FoIDL
in the induction process. On the task of analysis of the plural of English nouns,
we ran FoIDL and CLOG on subsets of the training set of size 100, 200, 300,
400, 500, 600, 700, 800, 900 and the whole set of 1063 examples. The running
times for CLOG were 21, 61, 112, 204, 277, 477, 646, 941, 1198, and 1771 seconds,

respectively. For FOIDL the running times of up to 700 examples were 254, 1290,
2191, 5190, 9521, 18353, and 33915 seconds, respectively (all times on a SUN
SPARC 10).

With FoipL we were therefore forced to cut the training set example sizes
(to 200 per concept — even so, learning of all 576 concepts still took about 5
days CPU time), while we were able to run CLOG on the whole dataset (on
average 317 examples per concept, 751 max, 1 min). This gave us a rule set
with significantly more predictive accuracy. Although a detailed analysis of the
reasons behind CLOG’s efficiency is beyond the scope of the current paper, we
believe there are two contributing reasons.

Firstly, CLOG only considers generalisations that are relevant to an example
(cf. Progol [8]). This helps in focussing the search to only those clauses that are
relevant with respect to an example. In the current implementation these gener-
alisations are supplied by a user-defined predicate generate_clauses(+Example,
-Clauses) which takes as input an example and generates a list of all gener-
alisations that cover that example. An alternative would have been to provide
mode declarations (cf. Progol [8]) which could then be used to build clauses
incrementally. However, since our primary aim was to build a system for learn-
ing morphological relations this generality was not essential and we chose the
simplest approach.

Secondly, CLOG treats the set of generalisations of an example as a general-
isation set. It then cycles every input example through the generalisation set in
a single iteration checking whether a candidate generalisation covers the exam-
ple positively or negatively. Once this process is complete the “best” candidate
generalisation is chosen. The example set is pruned using this candidate and the
cycle repeats. There are two advantages of this approach - 1. Every example is
accessed once (and used many times) and 2. The example set is accessed se-
quentially. This means that the example set can be kept in a file as opposed to
being kept in memory. This allows CLOG to handle large training sets.

The algorithm (see fig. 1) maintains two sets — namely examples yet to be
covered and examples already covered. The examples which have already been
covered can get “uncovered” by subsequent rules which results in such examples
needing to be covered again. This is important since CLOG uses a hill-climbing
strategy (as does FOIDL) and hence is sensitive to the example order. However,
this sensitivity is avoided if generalisations from subsequent examples override
a previously learnt rule by providing better gain. This turns out to be usually
the case given enough redundancy in the training data.

The gain function currently used in CLOG is user-defined. For the morphology
learning problem we used a simple function that maximises the number of new
positive examples covered against the sum-total of implicit negatives covered:

gain((G,SP,SN,QP,QN))=QP - QN — SN

where: G is the clause being learnt,
QP,QN: number of new ezamples covered positively and negatively
SP,SN: number of already covered examples covered positively and negatively

3.1 Problem representation

A morphological transformation rule transforms a word in one form to another
form. For example, the past morphological rule in English would transform the
word sleep (resp. walk) to the word slept (resp. walked). For languages that
employ concatenative morphology such as the majority of European languages,
different forms of the same word are realised by changing the prefizx and suffiz
of words. Thus, slept (resp. walk) can be derived from sleep (resp. walked) by
changing the suffix -ep (resp. -0) to the suffix -pt (resp. -ed).

We chose the following morphological rule representation:

past(A,B) :- mate(A,B,[1,[],[e,pl,[e,t]),!.

past(A,B) :- mate(A,B,[]1,[],[e],[e,d]),!.

past(A,B) :- mate(A,B,[1,[1,[1,[e,dl),!.

where the auxilliary predicate mate/6 is defined by:

mate(W1,w2,[1,01,Y1,[1):- split(wWi,w2,Y1).

mate (W1,w2,[1,[1,[1,Y2):- split(W2,W1,Y2).

mate (W1,W2,[],[1,Y1,Y2):- split(Wi,X,Y1), split(W2,X,Y2).

mate(W1,W2,P1,P2,Y1,Y2):- split(Wi,P1,W11), split(W2,P2,W22),
split(Wi1,X,Y1), split(w22,X,Y2).

split ([X,YI|Z], [X],[YIZ]).

split ([X1Y], [X1Z],w) :- split(Y,Z,W).

This representation contrasts with the representation used in [7, 3]:
past(A,B) :- split(A,C,[e,pl), split(B,C,[e,t]),!.

past(A,B) :- split(B,A,[d]), split(A,C,[el),!.
past(A,B) :- split(B,A,[e,d]),!.

Essentially, the predicate mate(W1,W2,P1,P2,51,S2) is true if P1 and S1
is the prefix and the suffix of W1 respectively and similarly for P1, S1 and w2.
Although, this representation is restrictive in that it can handle only prefixation
and suffixation operations we consider it to be sufficient for our task taking
advantage of the linguistic fact that the languages we are dealing with employ
concatenative morphology. Our representation has the benefit that it can easily
be understood by linguists.

The generalisation set is constructed by the following predicate which gen-
erates the set of all prefixes and suffixes of a morphologically related pair of
words.

generate_clauses(past(U,V),Clauses) : -

bagof ((past(X,Y) :- (mate(X,Y,P1,P2,51,52), !)),
mate (U,V,P1,P2,51,S2),
Clauses) .

One limitation of the current implementation is that the size of the gen-
eralisation set cannot be too large. For the morphology task the size of the
generalisation set ranged from 7 to 61 per example averaging between 22-35
for a typical example. However, this limitation can be avoided by a top-down
search of the hypothesis space (cf. Progol [8]). We hope to address this in our
future implementation.

4 Experiments and Results

In our experiments we used FOIDL and CLOG to perform two sets of experiments,
the first concerning synthesis and the second analysis of word-forms. For each
MSD, a set of rules for the predicate syn msd was induced: the induced rules
generate the oblique form from a given lemma. The input and output arguments
of the syn msd predicate are switched for the ana msd predicate: the task of
FoipL/CLOG was to learn rules that produce the base form of the word given
the oblique form. Apart from exchanging the input and the output, the set-up
for the synthesis and analysis experiments was identical. There were altogether
288 MSDs in the five languages.

As has been mentioned, the training sets were taken from the first three parts
of “1984”. Due to FoIDL’s computational efficiency limits and the large number
of relations to be induced, the 200 (most frequent) examples were chosen for
training for each MSD, where more than 200 were available. CLOG, on the other
hand, does not have efficiency problems, so the complete training set could be
used. In order to compare CLOG with FoiDL fully, we ran CLOG twice, once on
the same training set as FOIDL (i.e. cut at 200 examples), and once on the full
training sets. The Appendix of the novel was used for the test set. While the
whole “1984” has approx. 100,000 words, the Appendix has only approx. 4,000.
It therefore happens that a few rare MSDs were not represented in the test set
(6 for Romanian, 8 for Slovene).

The set-up for the experiment was as for the orthographic past tense learn-
ing experiment: for synthesis the training data were encoded as Prolog facts
of the form synmsd(lemma, oblique) and for analysis as Prolog facts of the
form ana msd(oblique, lemma). In both cases, the first argument of each tar-
get predicate is an input argument and the second is an output argument. The
predicate split was used as background knowledge with FoIDL, and mate with
CLoG. Constant prefixes and suffixes were allowed in the rules.

4.1 Results

For a start, let us take a look at the sets of rules induced for the particular task
of synthesising the genitive singular of Slovene feminine nouns. The complete
training set for this concept contained 608 examples, which were cut to the most
frequent 200. The testing set contained 313 examples.

Comparing FOIDL with CLOG on the same training and test set shows that
FoipL slightly outperforms CLOG on the n0fsg concept, with a 97.4% accuracy
(8 errors) for the former vs. 96.2% (12 errors) for the latter. In all cases, the
errors of FOIDL were due to a wrong lemma being proposed, while the errors of
CLoG were caused by the predicate failing.

The rule set induced by FOIDL consists of five exceptions and three general-
izations; the generalizations are listed below.

nOfsg(A,B) :- split(4,C,[e,n]), split(B,C,[n,il).

nOfsg(A,B) :- split(A,C,[al), split (B,C, [e]).
nOfsg(A,B) :- split(B,A,[i]).

From the bottom up, the first rule describes the formation of genitive for
feminine nouns of the canonical second declension where -i is added to the nom-
inative singular (lemma) to obtain the genitive. The second rule deals with the
canonical first declension, where the lemma ending -a is replaced by -e to obtain
the genitive. Finally, the third rule deals with nouns of the second declension
that exhibit a common morpho-phonological alteration in Slovene, the schwa
elision. Namely, if a schwa (weak -e-) appears in the last syllable of the word
when it has the -0 ending, this schwa is dropped with non-null endings: bolezen-
0, but bolezn-i. However, this alternation does not affect only second declension
feminine nouns but practically all inflecting words of Slovene. FOIDL attempts
to deal with other examples of this alternation on a case by case basis: of the
five exceptions, three exhibit this alternation.

An analysis of FOIDL’s test set errors on nOfsg reveals that all bar one are
due to a noun exhibiting schwa elision, which incorrectly triggers the default
second declension +i rule, e.g., *urnitevi instead of vrnitve, from the base form
vrnitev.

Running CLOG on the same training set (CLOG 200), the induced rules set is
somewhat larger, and consists of eleven exceptions and six generalizations, with
the generalzations listed below:

nOfsg(A,B) :- mate(A,B,[],[],[e,d],[e,d,i]),!.

nOfsg(A,B) :- mate(A,B,[],[],[e,n],[n,il),!.

nOfsg(A,B) :- mate(A,B,[],[], [ccaron], [ccaron,i]),!.

nOfsg(A,B) :- mate(A,B,[1,0,[r],[r,i]),!.

nOfsg(A,B) :- mate(A,B,[1,[1,[t],[t,il),!.

n0fsg(A,B) :- mate(A,B,[1,[1,[al,[el),!.

All the FOIDL exceptions are also included in the exceptions of CLOG. Ad-
ditionally, the first two of FOIDL’s generalisations are also induced by CLOG.
But where FoIiDL differs from CLOG is in the second declension default dis-
cussed above; while FOIDL posits the default rule, CLOG is more conservative
and attempts to model it by a series of exceptions and partial generalisations.
Ultimately, neither method is sufficient to correctly predict all the cases, as nei-
ther is able to successfully model the schwa elision. While FOIDL errors are all
due to schwa elision, the CLOG errors are due to a combination of schwa eli-
sion errors and second declension errors. Although the number of errors is here
slightly greater, the errors of CLOG are less severe; as has been mentioned, CLOG
fails on its errors, while FOIDL proposes an incorrect lemma.

We next give the average overall results on all the languages of the dataset.
The 288 programs learned by FoipL and CLOG for the synthesis and analysis
concepts show varying degrees of success in capturing the relevant morphological
generalizations. Table 1 gives an overview of the results obtained by testing the
induced programs. Three tests were performed; one for FOIDL, with the training
sets, where necessary, cut to 200 examples, then for CLOG on the same training
sets, and finally for CLOG on the full training sets.

For each experiment and for each language, the results on the synthesis and
analysis tasks are listed, first for nouns and adjectives separately (*n and *a)
(except for English, where there is only one MSD), then aggregated (*). The

FoipL 200 CLoG 200 CLoG
syn| *| 94.07% 21/6 94.73% 19/6 98.02% 38/17
ana| *|93.85% 22/5 |93.42% 21/3 [96.05% 65/9
English * *1 93.96% 43/11 94.07% 40/9 97.03% 103/26

a*| 95.91% 91/32 |95.33% 103/33 |97.23% 135/41
syn| n*| 92.00% 298/99 | 89.87% 382/100 | 93.77% 500/140
*193.01% 389/131 | 91.28% 485/133 | 94.66% 635/181
a*| 94.89% 101/27 |94.60% 115/29 |96.35% 159/38
ana| n*| 86.89% 422/144 | 86.84% 476/120 | 91.24% 724/181
*) 88.95% 523/171 | 88.84% 591/149 | 92.56% 883/219
Romanian| * *190.98% 912/302 | 90.06% 1076/282| 93.61% 1518/400

a*| 98.98% 144/76 |98.97% 155/79 | 98.77% 276/112
syn| n*| 93.85% 865/326 | 93.22% 1087/415 | 95.67% 1615/562
*1 96.61% 1009/402 | 96.32% 1242/494 | 97.34% 1891/674
a*| 98.90% 178/96 | 98.90% 197/93 | 99.06% 375/110
ana| n*| 92.53% 1054/375 | 91.14% 1285/375 | 94.76% 1909/550
*1 95.96% 1232/471 | 95.32% 1482/468 | 97.08% 2284/660
Czech * *1 96.29% 2241/873 | 95.82% 2724/962 | 97.21% 4175/1334

n*[95.02% 819/323 | 96.21% 904/305 | 97.78% 1114/372
syn| a*| 77.49% 1675/877 | 82.26% 1741/729 | 86.79% 3983/1106
*| 85.48% 2494/1200| 88.31% 2645/1034| 91.56% 5097/1478
n*| 95.01% 10147404 | 95.76% 1001/371 | 97.12% 1194/457
anal a*| 90.19% 1530/822 | 92.90% 1610/635 | 96.81% 2043/966
*| 92.28% 2544/1226| 94.14% 2611/1006| 96.95% 3237/1423
Slovene | * | *| 88.88% 5038/2426] 91.22% 5256/2040| 94.25% 8334/2901

a*| 88.5% 512/181 |85.51% 639/186 | 88.03% 771/230
syn| n*| 73.24% 1463/396 | 65.44% 1915/415 | 81.53% 3691/981
*| 78.19% 1975/577 | 71.94% 2554/601 | 83.64% 4462/1211
a*| 87.97% 520/223 | 86.45% 616/207 | 89.13% 756/260
ana| n*| 76.32% 1235/376 | 74.60% 1680/382 | 86.29% 3084/758
*| 80.10% 1755/599 | 78.45% 2296/589 | 87.21% 3840/1018
Estonian | * *179.14% 3730/1176| 75.20% 4850/1190| 85.42% 8302/2229
Table 1. Accuracy and complexity of FOIpL and CLOG rules

induced rules for each MSD are applied to the testing cases of that MSD and
the incorrectly predicted cases recorded. The number of test cases and incorrectly
predicted cases are then summed over all noun MSDs, all adjective MSDs, and
all MSDs. On the basis of these sums we then compute the percentage of the
correctly predicted cases in the test set, which is given as the first entry in each
cell of the table. The second cell entry gives the total number of clauses in the
concept decision list and the number of generalisations that appear in it, e.g.
21/6. This is an estimate of the complexity of the rules induced by FoibL and
CLog.

Comparing FoIDL 200 with CLOG 200 we can see that there is no great sys-
tematic difference between the accuracies: the difference in all cases, except Es-
tonian, is around 1%. However, FOIDL is somewhat more compact in expressing
the concepts, having smaller theory sizes, both with exceptions and generalisa-

tion. Unsurprisingly, CLOG run on the complete training set greatly outperforms
FoipL. As has been mentioned, speed of induction is the main advantage of CLOG
over FOIDL: even with full training sets, CLOG needs only a fraction of the time
that FOIDL does with the reduced training sets.

5 Conclusions

We have presented the ILP system CLOG and used it to learn rules for syn-
thesizing and analyzing inflectional forms of nouns and adjectives for English,
Romanian, Czech, Slovene, and Estonian. The accuracy of the obtained rule-sets
was evaluated and compared to the rule-sets obtained with the FOIDL system.
The two systems have comparative performance given the same training set.
However, while FOIDL is limited as to the ammount of training data it can han-
dle due to it’s computational efficiency, CLOG suffers no such bottleneck. Tests
on the full training set show that CLOG can outperform FoOIDL significantly.

Further work will focus on improving the induced rules by using additional
linguistic background knowledge, esp. for capturing (morpho-)phonological reg-
ularities and on using the improved rules to perform preliminary analysis of
word forms appearing in corpora, producing input for further text processing,
e.g., part-of-speech tagging.

Acknowledgements

The authors would like to thank Alan Frisch and two anonymous reviewers for
useful comments. This work was supported in part by the project ESPRIT IV
20237 ILP2.

References

1. J. Cussens. Part-of-speech tagging using Progol. In Proc. 7th Intl. Wshp. on Induc-
tive Logic Programming, pages 93-108. Springer, Berlin, 1997.

2. W. Daelemans, T. Weijters, and A. van der Vosch, editors. Proc. ECML-97 Work-
shop on Empirical Learning of Natural Language Processing Tasks. Prague, Czech
Republic, 1997.

3. S. Dzeroski and T. Erjavec. Induction of Slovene nominal paradigms. In Proc. 7th
Intl. Wshp. on Inductive Logic Programming, pages 141-148. Springer, Berlin, 1997.

4. T. Erjavec, N. Ide, V. Petkevi¢, and J. Véronis. MULTEXT-East: Multilingual text
tools and corpora for Central and Eastern European languages. In Proc. 1st TELRI
European Seminar, pages 87-98. Tihany, Hungary, 1995.

5. T. Erjavec, M. Monachini (eds.). Specifications and Notation for Lexicon Encoding.
MULTEXT-East Final Report D1.1F, Ljubljana, 1JS, 1997.

6. R. J. Mooney. Inductive logic programming for natural language processing. In Proc.
6th Intl. Wshp. on Inductive Logic Programming, pages 3—22. Springer, Berlin, 1997.

7. R. J. Mooney and M.-E. Califf. Induction of first-order decision lists: Results on
learning the past tense of English verbs. Journal of Artificial Intelligence Research,
(3):1-24, 1995.

8. S. Muggleton. Inverse entailment and Progol, New Generation Computing,(13):245—
286, 1995.

