Relational Reinforcement Learning

Saso Dzeroski
Department of Intelligent Systems
Jozef Stefan Institute
Jamova 39, SI-1000 Ljubljana, Slovenia

Saso.Dzeroski@ijs.si

Abstract

Relational reinforcement learning is pre-
sented, a learning technique that combines
reinforcement learning with relational learn-
ing or inductive logic programming. Due to
the use of a more expressive representation
language to represent states, actions and Q-
functions, relational reinforcement learning
can be potentially applied to a new range of
learning tasks. One such task that we inves-
tigate is planning in the blocks world, where
it is assumed that the effects of the actions
are unknown to the agent and the agent has
to learn a policy. Within this simple domain
we show that relational reinforcement learn-
ing solves some existing problems with rein-
forcement learning. In particular, relational
reinforcement learning allows us to employ
structural representations, make abstraction
of specific goals pursued and exploit the re-
sults of previous learning phases when ad-
dressing new (more complex) situations.

1 INTRODUCTION

Within the field of machine learning, both reinforce-
ment learning [8] and inductive logic programming (or
relational learning) [12, 10] have received a lot of atten-
tion since the early nineties. It is therefore no surprise
that both Leslie Pack Kaelbling and Richard Sutton
(in their invited talks at IJCAI-97, Nagoya, Japan)
suggested to study the combination of these two fields.

From the reinforcement learning point of view, this
could significantly extend the application perspective.
Most representations used in reinforcement learning
are inadequate for describing planning tasks such as
the simple blocks world. Even reinforcement learning

Luc De Raedt, Hendrik Blockeel
Department of Computer Science
Katholieke Universiteit Leuven

Celestijnenlaan 200A, B-3001 Heverlee, Belgium
{Luc.DeRaedt, Hendrik.Blockeel}@cs.kuleuven.ac.be

work that involves generalization has largely employed
an attribute-value representation. Furthermore, due
to the use of variables in relational representations, it
is possible to make abstractions of some specific details
of the learning tasks, such as the goal pursued. Indeed,
when learning to plan in the blocks world, one would
expect that the results of learning how to stack block
a onto block b would be similar to stacking ¢ onto d.
Current approaches to reinforcement learning have to
retrain from scratch if the goal is changed in this man-
ner. Using relational reinforcement learning retraining
is unnecessary. Relational reinforcement learning also
allows us to exploit the results of learning in a simple
domain when learning in a more complex domain (e.g.,
going from 3 blocks to 4 blocks in the blocks world).

From the inductive logic programming point of view,
it is important to address domains such as reinforce-
ment learning. So far, inductive logic programming
has mainly studied concept-learning, and largely ig-
nored the rest of machine learning. By demonstrating
the potential of relational representations for reinforce-
ment learning, we hope to show that the relational
learning methodology does not only apply to concept-
learning but to the whole field of machine learning.

With this in mind, we present a preliminary ap-
proach to relational reinforcement learning and ap-
ply it to simple planning tasks in the blocks world.
The planning task involves learning a policy to select
actions. Learning is necessary as the planning agent
does not know the effects of its actions. Relational re-
inforcement learning employs the Q-learning method
[14, 8, 11] where the Q-function is learned using a re-
lational regression tree algorithm (see [6, 9]). A state
is represented relationally as a set of ground facts. A
relational regression tree in this context takes as input
a relational description of a state, a goal and an action,
and produces the corresponding QQ-value.

This paper is organized as follows. In section 2, we
view planning (under uncertainty) as a reinforcement
learning task, and in section 3, we briefly review re-
inforcement and in particular Q-learning. Section 4
introduces relational reinforcement learning that com-
bines Q-learning and logical regression trees. In sec-
tion 5, we present some experiments, and finally, in
section 6, we conclude and touch upon related work.

2 LEARNING TO PLAN AS
REINFORCEMENT LEARNING

Consider a planning agent with the following task:

Given

a set of possible states S,

a set of possible actions A,

an UNKNOWN function §: S x A — A,

a function pre:S x A — {t, f},

a goal goal:S — {t, f}, and

e a starting state s € S,
find a sequence of actions ay, ..., a, (a; € A) such that

e goal(6(...0(s,a1))...),a,)) = t, and
e pre(6(...0(s,a1))...),...a;)) =t.

The agent can be in one of the states of S. It can exe-
cute action a € A in a given state s if the preconditions
for a are true in s (pre(s,a) = t), e.g., as in STRIPS
[7]. Executing an action a in a state s will put the
agent in a new state d(s,a). When placed in a state s
the task of the agent is to find a (shortest) sequence
of actions ay,...,a, that will lead it to a goal state.
The prototypical Al task belonging to this category is
planning.

It is assumed here that the agent does not know the
effect of its actions, hence the function ¢ is unknown
to the agent. The above task specification thus con-
trasts with classical planning in that the ¢ function is
unknown to the agent. Therefore, this task requires a
learning component.

Example: The best known (toy)-domain to study
planning is the blocks world. Consider the situ-
ation where we have three blocks called a, b and

¢, and the floor. Blocks can be on the floor or
can be stacked on each other. Each state can
be described by a set (list) of facts, e.g., s1 =
{clear(a),on(a,b),on(b,c),on(c, floor)}. The avail-
able actions are then move(z,y) where z # y and
z € {a,b,c}, y € {a,b,c, floor}.

It is then possible to define the preconditions and ef-
fects of actions. The Prolog code below defines pre
and § respectively. The predicate pre defines the pre-
conditions for the action move(X,Y) while the predi-
cate delta defines its effects: delta(S,A,S1) succeeds
when §(S, A) = S1. States are represented as lists of
facts and the auxiliary predicate holds (S, Query) suc-
ceeds when Query would succeed in the knowledge base
containing the facts in S only.

pre(S,move(X,Y)) :-
holds (S, [clear(X), clear(Y),
not X=Y, not on(X,floor)]).
pre(S,move(X,Y)) :-
holds (S, [clear(X), clear(Y),
not X=Y, on(X,floor)]).
pre(S,move(X,floor)) :-
holds (S, [clear(X), not on(X,floor)]).

holds(S,[1).
holds(S,[not X=Y | R]) :-
not X=Y, !, holds(S,R).
holds(S,[not A | R]) :-
not member(A,S), holds(S,R).
holds(S,[A | R]) :-
member (A,R), holds(S,R).

delta(S,move(X,Y), NextS) :-
holds (S, [clear(X), clear(Y),
not X=Y, not on(X,floor)]),
delete([clear(Y),on(X,Z)],S,51),
add([clear(Z),on(X,Y)],S1,NextS).
delta(S,move(X,Y), NextS) :-
holds (S, [clear(X), clear(Y),
not X=Y, on(X,floor)]),
delete([clear(Y),on(X,floor)],S,S1),
add([on(X,Y)],S1,NextS).
delta(S,move(X,floor), NextS) :-
holds (S, [clear(X), not on(X,floor)]),
delete([on(X,Z)] ,S,S1),
add([clear(Z) ,on(X,floor)],S1,NextS).

The goal is to stack a onto b, Ii.e.,
goal(S) :- member(on(a,b),S). O

3 REINFORCEMENT LEARNING

Planning with incomplete knowledge as outlined above
can be recast as a reinforcement learning problem.

3.1 THE BASICS OF REINFORCEMENT
LEARNING

The basic notions of reinforcement learning can be
outlined as follows (we follow the notation used by
Mitchell [11]).

e The task of the agent is to learn a policy 7 : S —
A for selecting its next action a; based on the
current state sg; that is w(s¢) = ay.

e The reward at time ¢ is ry = 7(s¢,a¢). We will
assume here that r, = 1 if goal(d(s¢,a;)) =t and
st # 0(sy, a); otherwise ry = 0. The reward func-
tion r is unknown to the learner as it relies on
the unknown §. The reward function only gives a
reward in goal states.

e The state at time ¢ + 1 is s;p1 = 0(sg,a) if
goal(sy) = f; otherwise s;11 = s¢;. This captures
the idea that goal states are absorbing states, i.e.,
once a goal state is reached the only available ac-
tion is to stay in the state.

e The learned policy should be optimal, i.e., it
should maximize

oo
V(s) =Y 7'ren
i=0

where 0 < v < 1. We will denote the optimal
policy by 7*.

The optimal policy 7* allows us to compute the short-
est plan to reach a goal state. So, learning the optimal
policy (or approximations thereof) will allow us to im-
prove our planning performance.

3.2 Q-LEARNING

It is well-known that under the conditions sketched in
the previous subsection, Q-learning allows us to ap-
proximate the optimal policy.

The optimal policy 7* will always select the action
that maximizes the sum of the immediate reward and
the value of the immediate successor state, i.e.,

7*(s) = argmaz,(r(s,a) + V™ (8(s,a)))

The problem with this formulation of 7* is that it re-
quires knowledge of § and r, which the learner does
not have at its disposal.

The Q-function is defined as follows :

Q(s,a) = r(s,a) + V™ (8(s,a))

Knowing () allows us to rewrite the definition of 7* as
follows :

m*(s) = argmaz,Q(s,a)

According to Mitchell, this rewrite is important as it
shows that if the agent can learn the @ function instead
of the V™" function, it will be able to act optimally.
The Q-function for a fixed goal can then be approxi-
mated by @, for which a look-up table is learned by
the following algorithm (cf. [11]).

for each s, a do
initialize the table entry Q(s,a) =0
do forever
i:=0
generate a random state sg
while not goal(s;) do
select an action a; and execute it
receive an immediate reward r; = r(s;,a;)
observe the new state s;11
ii=i+1
for j=i-1to 0 do
update Q(sj,aj) =1+ ’ymaa:a:Q(sHl,a')

It is common in Q-learning to select action a in state
s probabilistically so that P(als) is proportional to

Q(s,a), eg.,

P(as|s) = k9= / ZkQ(s,a]‘) (1)

J

Higher values of k give stronger preference to actions
with high values of () causing the agent to exploit what
it has learned, while lower values of k reduce this pref-
erence allowing the agent to explore actions that cur-
rently do not have high values of Q

4 RELATIONAL
REINFORCEMENT LEARNING

4.1 THE NEED FOR RELATIONAL
REPRESENTATIONS

Given the above classical framework for Q-learning we
could now learn to plan in the blocks world sketched
earlier. Using the approach as it stands we could
store all the state-action pairs encountered and mem-
orize/update the corresponding @ values, having in
effect an explicit look-up table for state-action pairs.
This has however a number of disadvantages:

move(c,floor) move(b,c)
r=0 r=0
Q=0.81 Q=0.9

¢ | — ——

move(a,b)
r=1 move(a,floor)
Q=1 r=0

Q=0
> d

Figure 1: A blocks-world example for relational Q-learning.

e It is impractical for all but the smallest state-
spaces. Furthermore, using look-up tables does
not work for infinite state spaces which could arise
when first order representations are used (e.g., if
the number of blocks in the world is unkown or
infinite the above method does not work).

e Despite the use of a relational representation for
states and actions, the above method is unable
to capture the structural aspects of the planning
task.

e Whenever the goal is changed from say on(a,b) to
on(b, c) the above method would require retrain-
ing the whole @ function.

e Ideally, one would expect that the results of learn-
ing in a world with 3 blocks could be (partly) re-
cycled when learning in a 4 blocks world later on.
It is unclear how to achieve this with the lookup
table.

The first problem can be solved by using an inductive
learning algorithm (e.g., a neural network) to approx-
imate). The three other problems can only be solved
by using a relational learning algorithm that can make
abstraction of the specific blocks and goals using vari-
ables. We now present such a relational learning algo-
rithm.

4.2 THE RRL ALGORITHM

The relational reinforcement learning (RRL) algo-
rithm is obtained by combining the classical Q-
learning algorithm with stochastic selection of actions
and a relational regression algorithm. Instead of hav-
ing an explicit lookup table, an implicit representation
of the Q-function is learned in the form of a logical re-
gression tree, called a Q-tree.

The main point where RRL differs from the algorithm
in section 3.2 is in the for-loop where the @) function
is modified. This for-loop now becomes :

for j=i-1to 0 do
generate example (s;,a;,d;),
where §; := r; + Ymazy Qe(sjt1,a)
update Q. using TILDE-RT
to produce Qe+1 using the examples (s;,a;,§;)

TILDE-RT [6] is an algorithm for learning logical re-
gression trees and will be described briefly below.

The initial tree Qo assigns zero value to all state-action
pairs. From each goal state g encountered, an example
(9,a,0) is generated for each action a whose precondi-
tions are satisfied in g. The rationale for this is that
no reward can be expected from applying an action in
an absorbing goal state.

Example: A possible initial episode (e = 0) in the
blocks world with three blocks a, b, and ¢, where the
goal is to stack a on b (i.e., goal(on(a,b))) is depicted in
Figure 1. The discount factor v is 0.9 and the reward
given is one on achieving a goal state, zero otherwise.

The examples generated by RRL use the actions and
the Q-values listed above the arrows representing the
actions. The actual format of these examples is listed
in Table 1. It is exactly this input that would be used
by TILDE-RT to generate the Q-tree Q. O

TILDE-RT is not incremental, so we currently simu-
late the update of @ by keeping all (s, a) pairs encoun-
tered and the most recent ¢ value for each pair, and
inducing a relational regression tree Q. from these ex-
amples after each episode e. This tree is then used to
select actions in episode e + 1.

Table 1: Examples for TILDE-RT generated from the blocks-world Q-learning episode in Figure 1.

qvalue(0.81).
action(move(c,floor)).

qvalue(0.9).
action(move(b,c)).

goal(on(a,b)). goal(on(a,b)).
clear(c). clear(b).
on(c,b). clear(c).
on(b,a). on(b,a).
on(a,floor). on(a,floor).

on(c,floor).

qvalue(1.0).
action(move(a,b)).

qvalue(0.0).
action(move(a,floor)).

goal(on(a,b)). goal(on(a,b)).
clear(a). clear(a).
clear(b). on(a,b).
on(b,c). on(b,c).
on(a,floor). on(c,floor).

on(c,floor).

4.3 TOP-DOWN INDUCTION OF
LOGICAL REGRESSION TREES

Logical regression trees are similar to propositional re-
gression trees [3]: leaves predict a value for a continu-
ous class, while internal nodes contain conditions that
partition the example space. The difference is that
examples here are not feature or attribute-value vec-
tors, but sets of relational facts, representing, e.g., a
state of the blocks world, a goal, and an action to be
taken, all at the same time. Similarly, internal nodes
are not restricted to attribute-value tests but can be
first order literals containing predicates, variables and
complex terms.

The TILDE-RT system [6] induces such first order logi-
cal regression trees (or relational regression trees) from
examples (cf. [9] for a related approach). The input
for TILDE-RT is a set of state-action pairs together
with the corresponding Q-values, represented as sets of
facts. From this TILDE-RT induces (using the classi-
cal TDIDT-algorithm) a tree in which the classes cor-
respond to real numbers (Q-values).

To illustrate the above notions, consider the episode
shown in Figure 1. The examples for TILDE-RT gen-
erated by the RRL algorithm are given in Table 1. The
relational regression tree induced by TILDE-RT from
these examples is shown in Figure 2.

Nodes in the tree correspond to Prolog-queries. If
the query succeeds in an example the yes subtree is
taken, otherwise the no subtree. Different nodes in
the tree may share variables, e.g., the bottom node
in the tree (containing action(move(D,B))) refers to
the variable D that first appear in the root of the tree
(goal(on(C,D))). The Prolog program corresponding
to the tree is shown in the lower part of Figure 2.

The semantics of logical decision trees is extensively
discussed in [1], as well as the correspondence between
a tree and a Prolog program. The method to induce
the trees is described in [6] and is - for the case of
regression trees - very similar to Kramer’s SRT system
[9]. We refer to these papers for more details on the
representation and learning of such trees.

To find the Q-value corresponding to a state-action
pair, one has to construct a Prolog knowledge base
containing the Prolog program (corresponding to the
tree), all facts in the state, the action, and the goal.
Running the query 7-qvalue(Q) will then return the
desired result. E.g., the Q-tree above will return a Q-
value of zero for all actions if the goal is on(C,D) and
on(C,D) holds in the state (goal states are absorbing).
On the other hand, if the goal on(C,D) does not yet
hold and the action is move(C,D)), then a Q-value of
one is returned (reward of one for achieving a goal
state).

action(move(A,B)) , goal(on(C,D))

on(C,D) 7
+--yes: [0]
+--no: action(move(C,D)) ?
+--yes: [1]
+--no: action(move(D,B)) ?
+--yes: [0.9]
+--no: [0.81]
qvalue(0) :-
action(move(A,B)) , goal(on(C,D)) ,
on(C,D), !.
qvalue(1) :-

action(move(A,B)) , goal(on(C,D)) ,
action(move(C,D)), !.

qvalue(0.9) :-
action(move(A,B)) , goal(on(C,D)) ,
action(move(D,B)), !.

qvalue(0.81).

Figure 2: A relational regression tree generated by
TILDE-RT from the examples in Table 1 and its equiv-
alent Prolog program.

action(move(A,B)) , goal(on(C,D))

on(C,D) 7
+--yes: [0]
+--no: action(move(C,D)) 7
+--yes: [1]
+--no: on(B,C) ?
+-—-yes: [0.729]
+--no: on(B,D) ?
+--yes: [0.729]
+--no: action(move(A,C)) 7
+--yes: [0.81]
+--no: action(move(A,D)) ?
+--yes: [0.81]
+--no: clear(D) 7

+--yes: on(C,B) 7
+--yes: on(A,C) 7
| +--yes: [0.9]

|

|

| | +--no: clear(C) 7

| | +--yes: [0.9]
| | +--no: [0.81]
| +--no: [0.9]

+--no: clear(C) 7

+--yes: on(C,B) 7

| +--yes: [0.9]
| +--no: [0.81]
[0.81]

+--no:

Figure 3: The Q-tree generated by RRL in the 3 blocks world after 10 episodes.

5 EXPERIMENTS

We applied the RRL algorithm described above to
learn how to stack one block onto another in worlds
with three and four blocks, respectively. In particular,
the goal to achieve was on(a,b), the two other blocks
being ¢ and d. An example episode in the three blocks
world is depicted in Figure 1.

The discount factor v had the value 0.9. When select-
ing states stochastically according to equation 1, the
constant k was set to €%-2. Examples for learning Q-
trees were generated after each episode, as described
in the section above.

TILDE-RT was used to induce an updated Q-tree after
each episode. The minimal number of cases in a leaf
was set to one and TILDE-RT generated unpruned
trees, which exactly reproduce the Q-values for the
state-action pairs seen during the learning phase.

Using the above settings, the RRL algorithm was first
run for 10 episodes in the 3 blocks world. The tree
shown in Figure 3 was generated by TILDE-RT after
the final episode. This tree represents the optimal pol-
icy for the given reinforcement learning problem. The
top two levels of the tree match those of the tree in
Table 1, which was generated from a single episode.

It is important to note that the individual blocks are
not referred to in the tree itself directly, but only
through the variables of the goal. This means that the
tree represents the optimal policy not only for achiev-
ing the goal on(a,b), but also on(b,c) and on(c,a).
This is one of the major advantages of using a relation
representation for Q-learning.

The Q-tree obtained after 10 episodes in the 4 blocks
worlds was much larger (44 nodes as opposed to the 12
nodes of the 3-blocks Q-tree). It also represents an op-
timal policy: it chooses a shortest path to a goal state
from all initial states, if the action with the highest
Q-value is always selected.

The 3 top levels of the tree match with the tree from
the 3 blocks world. This indicates that the result of
learning in the 3 blocks world could be used to boot-
strap learning in the 4 blocks world. Indeed, if we take
the Q-tree learned in the 3 blocks world shown in Fig-
ure 3 and use it to select actions in the 4 blocks world,
it selects an optimal path to a goal state from all but
9 of the 73 possible initial states. In 4 of the 9 cases a
looping behavior is produced, in the remaining 5 cases
one extra action is needed as compared to an optimal
plan.

Using the Q-tree from Figure 3 to bootstrap RRL in
the 4 blocks world helps improve performance, espe-
cially in the initial episodes. Without bootstrapping,
after two episodes a tree is learned which produces
nonoptimal behavior in 12 of the 73 initial states.
With bootstrapping, the behavior of the learned tree is
nonoptimal for 8 of the 73 possible initial states. After
ten episodes, the learned Q-tree produces optimal be-
havior and is much smaller (27 nodes) as compared to
the Q-tree learned without bootstrapping (44 nodes).

6 DISCUSSION

We have presented an approach to planning with
incomplete knowledge that combines reinforcement
learning and relational regression into a technique
called relational reinforcement learning. The advan-
tages of this approach include the ability to use struc-
tured representations, which enables us to also de-
scribe infinite worlds, and the ability to use variables,
which allows us to abstract away from specific details
of the situations (such as, e.g., the goal). The ability
to use results of simpler tasks to bootstrap learning in
more complex tasks is also an advantage worth men-
tioning. Finally, it is easy to incorporate nondetermin-
istic actions within the proposed approach.

Even for standard reinforcement learning, scaling-up
as the dimensionality of the problem increases can be
a problem. Using a richer description language may
seem to make things even worse. However, there are
reasons to expect that using a richer representation ac-
tually enables relational Q-learning to scale-up better
than standard Q-learning. Let us illustrate these on
the blocks world.

First, in the representation employed, the relational
theories learned abstract away the block names, caus-
ing the number of states that are essentially differ-
ent to decrease. For instance, with goal(on(a,b))
the states {on(a, ¢), on(c,b), on(b, floor),on(d, floor)}
and {on(a,d),on(d,b),on(b, floor), on(c, floor)} are

essentially the same as ¢ and d are interchangeable.
In standard Q-learning, they would be considered dif-
ferent. In our 4-blocks example, the number of states
that essentially differ from one another is 73 for a stan-
dard Q-learner, but only 38 for a relational one. This
ratio increases combinatorially (since all blocks that
do not occur in the goal have no special status and are
thus interchangeable, the ratio increases roughly with
(n — 2)!, where n is the total number of blocks).

Second, the use of background knowledge makes it pos-
sible to abstract even further from specific situations
that do not essentially differ. For instance, when a
has to be cleared in order to be able to move it, it is
not essential whether there are 1, 5 or 17 blocks above
a: the top of the stack on a should be moved. Using
background definitions such as above(X,Y) (the recur-
sive closure of on(X,Y)) it is possible to state a rule
such as ”if there are blocks on a, move the topmost of
those blocks to the floor” which captures a very large
set of specific cases.

However, the exact scale-up behavior of relational re-
inforcement learning has still to be determined ex-
perimentally. The experimental evaluation of our ap-
proach done so far is preliminary and is mainly in-
tended to highlight the principal advantages of using
a relational representation for reinforcement learning.
We hope that this paper will inspire further research
into the combination of relational and reinforcement
learning, as much work remains to be done. This
includes work in the line of proper performance as-
sessment, both in terms of standard performance tests
in reinforcement learning fashion (root mean square
errors of learned Q-values wrt. the Q-values of the
optimal policy) and in considering more complex and
demanding planning problems.

More complex problems can be obtained by increasing
the number of blocks in the world, considering more
complex goals, such as building a stack of all available
blocks, and considering problems outside the blocks
world.

This work is related to work on generalization in re-
inforcement learning, which has however mainly ad-
dressed the use of neural networks for this purpose [13].
The closest related work is probably Chapman’s and
Kaelbling’s decision tree algorithm that was specif-
ically designed for reinforcement learning [5]. Note
however that our approach is distinguished from the
mainstream work in reinforcement learning by the use
of a relational representation.

Relational representations are commonly used in plan-
ning approaches. There have also been some at-
tempts to combine planning with relational learning
within those approaches, e.g., within the PRODIGY
approach [2]. Our approach is related to them through
the use of a relational representation. However, it
seems that the combination of planning, reinforcement
learning and relational learning has not been addressed
so far.

The reinforcement learning part of the work presented
in this paper is admittedly simple. We have taken a
standard textbook description of reinforcement learn-
ing [11] and incorporated an implementation of it
within our approach. We have considered a deter-
ministic setting and a goal-oriented formulation of the
learning problem. However, both restrictions can be
easily lifted to extend to non-zero rewards on non-
terminal states (the RRL algorithm actually makes no
assumption on the reinforcement received) and non-
deterministic actions. To handle nondeterministic ac-
tions an appropriate update rule (see page 382 of [11])
has to be used to generate examples for the TILDE-
RT algorithm. Other points where the reinforcement
learning part can be improved include the initializa-
tion of @@ values and the exploration strategy.

The current implementation of TILDE-RT is - accord-
ing to reinforcement standards - not optimal. One of
the reasons is that it is not incremental. However, in-
crementality is not enough, as the (estimated) values
of Q are changing with time. These problems are taken
care of within the Chapman and Kaelbling’s decision
tree algorithm that was specifically designed for rein-
forcement learning [5]. A natural direction for further
work is thus to develop a first order regression tree al-
gorithm combining the representations of TILDE-RT
with the algorithm and performance measures of the
approach by Chapman and Kaelbling. Such an in-
tegrated approach, which is currently under develop-
ment, would not suffer from the abovementioned prob-
lems.

Acknowledgements

This work was supported in part by the ESPRIT IV
Project 20237 ILP2. Luc De Raedt is supported by
the Fund for Scientific Research of Flanders. Hendrik
Blockeel is supported by the Flemish Institute for the
Promotion of Scientific and Technological Research in
Industry (IWT).

References

[1] Blockeel, H., and De Raedt, L. (1997) Experi-
ments with Top-down Induction of Logical Deci-
sion Trees. Artificial Intelligence. Forthcoming.

[2] Borrajo, D., and Veloso, M. (1997) Lazy incremen-
tal learning of control knowledge for efficiently ob-
taining quality plans. AT Review, 11(1-5): 371-405.

[3] Breiman, L., Friedman, J. H., Olshen, R. A., and
Stone, C. J. (1984) Classification and Regression
Trees. Wadsworth, Belmont.

[4] Blockeel, H., and De Raedt, L. (1997) Lookahead
and discretization in ILP. In Proc. 7th Intl. Work-
shop on Inductive Logic Programming, pages 77—
84, Springer, Berlin.

[5] Chapman, D., and Kaelbling, L. (1991) Input gen-
eralization in delayed reinforcement learning: An
algorithm and performance comparisons. In Proc.
12th Intl. Joint Conf. on Artificial Intelligence,
Morgan Kaufmann, San Mateo, CA.

[6] De Raedt, L., and Blockeel, H. (1997) Using logi-
cal decision trees for clustering. In Proc. 7th Intl.
Workshop on Inductive Logic Programming, pages
133-141, Springer, Berlin.

[7] Fikes, R.E., and Nilsson, N.J. (1971) STRIPS: A
new approach to the application of theorem prov-
ing. Artificial Intelligence, 2(3/4): 189-208.

[8] Kaelbling, L., Littman, M., and Moore, A. (1996)
Reinforcement learning: A survey. Journal of Ar-
tificial Intelligence Research, 4: 237-285.

[9] Kramer, S. (1996) Structural regression trees. In
Proc. 13th Natl. Conf. on Artificial Intelligence.
AAAT Press, Menlo Park, CA.

[10] Lavra¢, N. and Dzeroski, S. (1994) Inductive Logic
Programming: Techniques and Applications. Ellis
Horwood, Chichester.

[11] Mitchell, T. (1997) Machine Learning. McGraw-
Hill, New York.

[12] Muggleton, S., and De Raedt, L. (1994) Inductive
logic programming : Theory and methods. Journal
of Logic Programming 19/20: 629-679.

[13] Tesauro, G. (1995) Temporal difference learning
and TD-GAMMON. Communications of the ACM,
38(3): 58-68.

[14] Watkins, C., and Dayan, P. (1992) Q-learning.
Machine Learning, 8: 279-292.

