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Abstract

Using ecological domain knowledge, machine discovery systems can help human
experts to generate models from 1neasured data. In contrast with traditional
modeling methods, which are used to identify parameter values of the model
with prescribed structure, machine learning tools identify the structure of the
model as well.

In the paper, we present LAGRAMGE, an equation discovery system that uses
context free grammars to define the space of possible model structures, and can
also make use of domain specific background knowledge in the form of function
definitions. We use LAGRAMGE to automate the modeling of phytoplankion
growth in Lake Glumsoe, Denmark. The structure of the automaticly constructed
model agrees with human experts expectations. The model can be successfully
used for short-term prediction of the phytoplankton concentration.

1 Introduction

The task of modeling dynamic systems is to find a model that describes
an observed behavior. Usually, a model of a dynamical system is a set of
differential equations that specify the change of system variables over time.
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Mainstream system identification methods work under the assumption that
the model structure, i.e. the form of the differential equations, is known [6].
The task is then to determine the values of the constant parameters in the
equations, so that the model fits measured data. Machine discovery systems,
such as LAGRANGE (2] and GoldHorn [5] do not assume a prescribed mode]
structure, but rather explore a space of (possibly nonlinear) equations. They
help human experts to identify the structure of the model as well as the
values of the constant parameters.

Machine discovery systems can be used for automated modeling of eco-
logical dynamic systems. Kompare [4] used LAGRANGE and GoldHorn to
produce a model for predicting algal growth in the Lagoon of Venice. Several
problems arise when using these systems for modeling experimental data.
LAGRANGE discovered some equations resembling the optimal temperature
for algal growth, but no good equations were discovered, from the view-
point of what human experts expected. The cause for this was the level of
noise in the data. GoldHorn incorporates methods for discovery from noisy
data, so the expected equations were discovered, but a lot of equations with
nonacceptable structure were ranked as better fitted.

These problems led to the idea of narrowing the search space of equa-
tions, that LAGRANGE and GoldHorn consider in the process of discovery.
In the area of machine learning, the concept of declarative language bias
[7] is used to specify the hypothesis space (space of all possible equations,
in the task of equation discovery). It was observed that smaller hypothesis
space would lead to better performance of the learned concept (model) on
a test set of unseen cases.

In the paper,; we present an equation discovery system LAGRAMGE, that
uses context free grammars as a formalism for declarative bias. The gram-
mar can use the usual mathematical operators defined in the C programming
language as well as additional functions defined by the grammar at hand.
The grammar is specified according to the domain specific knowledge, and
focuses the equation discovery process to equations with acceptable struc-
ture within the domain of use.

LAGRAMGE was used on the problem of modeling the phytoplankon
growth in the Lake Glumsoe in Denmark. The structure of equations dis-
covered make sense from the ecological point of view. They can also be
used as accurate short-term predictors for phytoplankton growth. The per-
formance of the predictor is comparable to the performances of no-change
and same-change predictors for prediction period of one to five days.

The paper is organized as follows. Section 2 gives overview of LaA-
GRAMGE. First it defines the equation discovery problem, as addressed
by LAGRAMGE. The use of grammars for incorporating domain specific
knowledge in the equation discovery is shown on an example of a simple
ecological domain. It ends with a brief description of the algorithm. In
Section 3 the Lake Glumsoe domain is presented. Section 4 describes the
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performed experiments in modeling Lake Glumsoe and the evaluation of
the obtained model. Finally, Section 5 concludes with a summary of the
results.

2 The equation discovery system LAGRAMGE

2.1 Problem definition

The problem of equation discovery, as addressed by LAGRAMGE, can be
defined as follows.
Given:

e context free grammar G = (N, T, P, S) (see Section 2.2) and
e input data D = (V,vq, M), where

— V ={v1,vq,...vn} is a set of domain variables,
— vy € V is dependent variable and

— M is a tuple of one or more measurement sets. Each mesuare-
ment set is a table of measurements of the domain variables in
distinct time points:

time | v Vg ... Up
to N0 V20 --- Un,0
tl V1,1 V21 .- Un,1
t2 V1,2 V22 .- Un,2
tN Ui,N U, N .- Un,N -

find an equation for expressing the dependent variable vg 1n terms of vari-
ables in V. This equation is expected to minimize the discrepance between
the measured and calculated values of the dependent variable. The equation
can be:

e differential, i.e. of the form Ovy/0t = E, or

e ordinary, i.e. of the form vq4 = E,

where E is an expression that can be derived from the context free grammar

G.
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2.2 The declarative bias formalism

The syntax of the expressions on the right side of the equation are pre-
scribed with the context free grammar G = (N, T, P, S ). N, T and P are
sets of nonterminals, terminals and productions and S € N is the starting
nonterminal. Productions in P are of the form A — o, where A € N is
called the left side and « € (N UT)* the right side of the production.

The grammar used to describe the declarative bias for equation finding
has several symbols with special meanings. The terminal const € T is used
to denote a constant parameter in an equation, that has to be fitted to the
input data. The terminals v; are used to denote variables from the input
domain D. Finally, the nonterminal v € N denotes any variable from the
input domain. Productions connecting this symbol to the terminals v; are
attached to v automatically, i.e. Vi, € V : v — v; € P.

The only restriction on the grammar G is that it has to generate ex-
pressions that are legal in the C programming language. This means that
it can use all C built-in operators and functions. Additional functions, rep-
resenting background knowledge about the addressed domain, can be used
as long as they are defined in conjunction with the grammar.

Expressions can be derived in grammar G from nonterminal symbol S
with applying productions in P. We use a production from P to expand the
nonterminal on its left side with the symbols on its right side. Starting with
expression .S, we expand it with productions from P, until it is composed
of terminals only.

2.3 An example - aquatic ecosystem

We illustrate the use of grammars on a simple aquatic ecosystem domain.
A system of differential equations describes the evolution of the concen-
trations of nutrient N, phytoplankton P and zooplankton Z in an aquatic
environment: '

N =

double monod(double c, double v) {
return(v / (v + ¢));

}
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N = {E, F, ﬂ’[,’U}
T = {+,const,*,monod,(,, ),N,P,Z}
E — const | const * F | E + const * F
P = F - v|M|vsM
M - monod(const,v)
S = E

The grammar above is constructed based on background ecological
knowledge. The Monod term is defined with function monod in the C pro-
gramming language and incorporated in the grammar through nontermi-
nal A/. The rest of the grammar is used to combine the Monod terms
with domain variables in legal C expressions. We can derive the expression
const x N/(const + N) from the grammar with the following derivation:

Expression Production used

E — E — const * F

const x F' — F—M

const x M — M — monod(const,v)
const * monod(const,v) = | v — N

const * monod(const, N)

2.4 LAGRAMGE - the algorithm

Expressions generated by the context free grammar G contain one or more
special terminal symbols const. A nonlinear fitting method is applied to
determine the values of these parameters. The fitting method minimizes
the value of the error function Error(c), i.e. if c is the vector of constant
parameters in expression F, then the result of the fitting algorithm is a
vector of parameter values c*, such that ¢* = argmin ¢ gnc { Error(c)}. The
error function Error is a sum of squared errors function, defined in the
following manner: ‘

o for differential equation of the form Jva/ ot = E:
Error(c) = XX, ['Ud’i - (vd,o + J& E(c,vy,. .. vn))]z, and

e for ordinary equation of the form vy = E:

Error(c) = ﬁio(vd,i — E(c,v14, -+ Ud=1,is Vd+1,is - - .vn,,-))2.

The downhill simplex and Levenberg-Marquart algorithms [8] can be
used for minimization of the error function.

Furthermore, the value of a heuristic function of the expression is eval-
uated. It is based on the sum of squared errors value SSE calculated by the
fitting method (SSE(E) = Error(c*)). An alternative heuristic function

MDL can be .used, that take into account the length [ of E:



538 Water Pollution

[
10 - lma:t: Tver
where I, is the length of the largest expression generated by the grammar.
The MDL (minimal description length) heuristic function prefers shorter
equations.

The LAGRAMGE algorithm searches for the best equation according to
the heuristic function. A beam search procedure is used to search the space
of all equations that can be derived by the context free grammar G.

MDL(E) = SSE(E) +

3 Lake Glumsoe

The Lake Glumsoe [3] is situated in a sub-glacial valley in Denmark. It is
shallow with average depth of about 2 m and its surface area is 266,000 m?2.
For several years, it has received mechanically-biologically treated waste
water from a community with 3,000 inhabitants and mainly agricultural
(almost no industry) surrounding. The high nitrogen and phosphorus con-
centration in the waste water caused hypereutrophication. The lake con-
tains no submerged vegetation, probably due to the low transparency of the
water and oxygen deficit at the bottom of the lake.

Concentrations of phytoplankton (phyt), zooplankton (z00), soluble ni-
trogen (/NVS) and soluble phosphorus (PS ) were considered relevant for mod-
eling the phytoplankton growth. State variables were measured in 14 dis-
tinct time points, over a period of two months. Due to the small amount
of measured data, additional processing was applied to obtain experimental
data [4, 1]. First, dotted graphs of measured data were plotted and given
to three human experts to draw a curve that, in their own opinion, de-
scribes the dynamic behavior of the observed state variable. Curves drawn
by the human experts were then smoothed with Besier splines. Finally,
three experimental data sets were obtained by sampling the splines from
each human expert at regular time intervals with time step A = 0.1 day.
The dynamic behaviors of the phytoplankton in three experimental data
sets are shown on Figure 1.

T
5 93 5 55 5 55

Figure 1: Phytoplankton growth as seen by three domain experts
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4 Experiments

The grammar used in the experiments was constructed based on ecological
background knowledge on algal growth. Phosphorus and nitrogen are nutri-
ents for phytoplankton and can thus appear in Monod terms (productions
for nonterminals M and VM). Other terms model the decay of phytoplank-
ton and the feeding of zooplankton on phytoplankton. 72 equations can be
derived from the grammar.

There are some constraints on the values of the parameters in the equa-
tions specified by the grammar: they have to be positive, except for the
ones in front of the decay term and the term describing the feeding of zoo-
plankton on phytoplankton.

double monod(double c, double v) {
return(v / (v + ¢));

}

E —  F xv_phyt + const x v_phyt

| F xv_phyt + const * v_phyt + const * V_phyt * v_zo0
F — const x M * M | const x M + const x M | const + M
M  — monod(const, VM)
VM — v_PS|v.NS

In the experiments we used the ’leave one out’ testing method: LaA-
GRAMGE was given two sets of data for equation discovery, and the best
equation discovered was then tested on the remaining data set. The equa-
tion was tested on the task of predicting phytoplankton growth.

In experiments with MDL heuristic (all possible 72 equations were con-
sidered), the best equation discovered by LAGRAMGE was chosen that satis-
fied the constraints for the parameters’ values. The three equations obtained
have the same structure:

phyt = const, * phyt PS/(const, + PS) + consts * phyt

The structure of the equations discovered makes sense from an ecological
point of view. It tells us that phosphorus is a limiting factor for phytoplank-
ton growth in the lake.

The constant parameters’ values, as well as the correlation coefficients
between the measured and predicted values of phytoplankton (on the testing
set) for each of the three equations are shown below:

Training data sets | const; consts consts T
1,2 0.616791  0.101413 -0.442205 | 0.999452
1,3 0.762913 0.0796594 -0.591642 | 0.998856
2,3 0.3831  0.444443 -0.155398 | 0.99958
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It can be seen that all equations give accurate short term predictions
for phytoplankton growth. Furthermore, we tested the robustness of the
predictor on increasing the prediction period. The summary of the results
(correlation coefficients between measured and predicted values) for predic-
tion periods of one, two and five days are given bellow:

Training data sets 1 day 2 days 5 days
1,2 0.983556 0.941354 0.724288
1,3 0.984942 0.955216 0.813708
2,3 0.985263 0.956632 0.726635

Finally, we compared the accuracy of the obtained predictor with the
accuracies of two simple predictors: no-change and same-change. The no-
change predictor predicts that the value of the variable in the next time
point will be the same as the present value (phyt(t + h) = phyt(t)). Same-
change predicts the same change, as the change in previous time step
(phyt(t+h) —phyt(t) = phyt(t) — phyt(t—h)). The graphs on Figure 2 show
the dependence of correlation coefficients between the measured values and
values predicted with the three different predictors on increasing prediction
period for all experimental data sets.

1 _ 15

testing on data set 1 o testing on data set 2
0.6 T I 0.6 , ]
1 5 1 . 5
1
LAGRAMGE —
no-change - - -
same-change —
testing on data set 3
06 T |

1 )

Figure 2: The correlation coefficient between the measured and predicted
values as the prediction time increases.

The graphs show that the accuracy of the predictions decreases as the
prediction time increases, which was expected: The performance and ro-
bustness of all predictors is comparable. Same-change predictor has better
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performance than the one obtained with LAGRAMGE, especially on the third
data set. The no-change predictor has the lowest accuracy on all data sets.

5 Discussion

We have presented an equation discovery system LAGRAMGE that uses
declarative bias to incorporate domain specific knowledge in the process
of equation discovery. Context free grammars are used to specify the equa-
tion structure. Background knowledge in the form of function definitions
can also be used. LAGRAMGE (heuristically) searches the space of equation
structures defined by a grammar. LAGRAMGE uses nonlinear optimization
procedures, such as downhill simplex and Levenberg-Marquardt to fit equa-
tion parameters. The search heuristic used is based on the fit, but can also
take into account the length of equations (MDL). LAGRAMGE can find both
ordinary and differential equations. in both implicit and explicit form. It
can also take into account more than one behavior of a dynamic system.

- We used LAGRAMGE on the task of modeling phytoplankton growth
in the Lake Glumsoe, Denmark. For three different learning data sets we
obtained equations with the same structure, which is acceptable in the sense
of ecological expert’s knowledge. The structure of the equations tells us that
phosphorus is a limiting factor for phytoplankton growth in the lake.

Furthermore, equations obtained with LAGRAMGE were tested on the
problem of the prediction of phytoplankton growth. Tests shown that the
equations obtained can be used for accurate short-term (one or two days
ahead) predictions. The accuracy of the predictor is comparable to the
simple no-change and same-change predictors. We expect that the accu-
racy and robustness of the predictor, obtained with LAGRAMGE, can be
improved with providing better measurement data to the process of equa-
tion discovery. Namely, the available experimental data were obtained on
the basis of only 14 measurements made in a period of two months. Ex-
tensive regular measurements can be done over one year period to provide
good basis for automated modeling.
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