On Multi-class Problems and Discretization in
Inductive Logic Programming

Wim Van Laer?, Luc De Raedt!, Sago Dzeroski?

! Department of Computer Science, Katholicke Universiteit Leuven
Celestijnenlaan 200A, B-3001 Heverlee, Belgium
2 Department of Intelligent Systems, Jozef Stefan Institute
Jamova 39, 1111 Ljubljana, Slovenia
Email:{WimV,LucDR}@cs .kuleuven.ac.be, saso.dzeroskiQ@ijs.si

Abstract. In practical applications of machine learning and knowledge
discovery, handling multi-class problems and real numbers are important
issues. While attribute-value learners address these problems as a rule,
very few ILP systems do so. The few ILP systems that handle real num-
bers mostly do so by trying out all real values applicable, thus running
into efficiency or overfitting problems.

The ILP learner ICL (Inductive Constraint Logic), learns first order logic
formulae from positive and negative examples. The main characteristic
of ICL is its view on examples, which are seen as interpretations which
are true or false for the target theory. The paper reports on the exten-
sions of [CL to tackle multi-class problems and real numbers. We also
discuss some issues on learning CNF formulae versus DNF formulae re-
lated to these extensions. Finally, we present experiments in the practical
domains of predicting mutagenesis, finite element mesh design and pre-
dicting biodegradability of chemical compounds.

Keywords: Learning, Knowledge Discovery, Inductive Logic Program-
ming, Classification, Discretization.

1 Introduction

The ILP system ICI (Inductive Constraint Logic, see [7]) does not employ the
traditional ILP semantics in which examples are clauses that are (resp. are not)
entailed by the target theory. It rather takes the view that examples are logi-
cal interpretations that are a model (resp. not a model) of the unknown target
theory. This view originates from computational learning theory where it was
originally applied to boolean concept-learning [18], but recently upgraded to-
wards 1st order logic [6] where it is known as learning from interpretations [4].

The ICL system can be considered an upgrade of the attribute value learning
system CN2 [3]. However, whereas CN2 learns boolean concepts in DNF form,
ICL learns first order theories in CNF form.

In this paper, we import further features of attribute value learning into the
ILP system ICL. First, it is shown that ICL can also learn DNF concepts. This
is realized using a (logically sound) transformation on inputs and outputs. Sec-
ondly, CN2’s way of handling multi-class problems (i.e. problems where examples

can belong to more than 2 classes) is also incorporated within TCT.. Thirdly, and
most importantly, (as many other ILP systems) TCT has problems with handling
real numbers. In attribute value learning, discretization has recently received a
lot of attention (cf. [2, 9]) and proven to be a valuable technique. We show how
Fayyad and Irani’s discretization technique ([11, 9]) can be modified for use in
ILP and more specifically in ICL.

The paper is structured as follows. In Section 2, some logical background is
given and the framework in which ICL works is described. Section 3 discusses
some issues on the CNF and DNF representations used in ICL. In Sections 4
and 5, we show how we can handle problems with more than two classes and
data with real numbers. Section 6 describes some experiments that indicate the
usefulness of the newly incorporated features in ICL. Section 7 concludes.

2 The Learning System ICL

An overview of ICL can be found in [7]. Here, we will describe the framework
of ICL in an informal way and discuss some practical aspects.

But first we will introduce some concepts from logic (for an introduction to
first order logic and model theory, we refer to [14, 12]).

A first order alphabet is a set of predicate symbols, constant symbols and
functor symbols. An atom p(t1,...,t,) is a predicate symbol p followed by a
bracketed n-tuple of terms ¢;. A term ¢ is a variable V or a function symbol f
immediately followed by a bracketed n-tuple of terms ¢;. Constants are function
symbols of arity 0. A literal / is an atom or the negation of an atom. Atoms are
positive literals, negated atoms are negative literals.

A CNF (Conjunctive Normal Form) expression is of the form
(\V/Vl,l, ceey V1,U1 : 11,1 V..V ll,"h) VANPRAN (\V/kal, ceey Vk,uk : lk71 V..V lk,nk)
where [; ; are literals and V; 1, ..., Vi, are variables occurring in l;1 V ... VI; ..

A DNF (Disjunctive Normal Form) expression is of the form
(3V1,1, ceey V1,U1 : 11,1 AN A ll,"h) V..V (Hkal, ceey Vk,uk : lk71 AN lk,nk)
where [; ; are literals and V; 1, ..., Vi, are variables occurring in l;1 A ... Al; ;.
The symbol V reads ‘for all’ and stands for universal quantification, and 3 reads
‘there exists’ and stands for existential quantification. For instance, the formula
3C, T : triangle(T) A circle(C) A in(C, T) states that there exist a triangle and
a circle such that the circle is inside the triangle.

A Herbrand interpretation over a first order alphabet is a set of ground atoms
constructed with the predicate, constant and functor symbols in the alphabet.
A Herbrand interpretation corresponds in the boolean or propositional case to a
variable assignment. The meaning of a Herbrand interpretation is that all atoms
in the interpretation are true, and all other atoms are false.

A substitution 8 = {V3 « t1,..., Vs, < t,} is an assignment of terms %1, ..., i,
to variables V7, ..., Vj.

By now, we can define the truth and falsity of an ezpression in a Herbrand
interpretation (if an expression is true in an interpretation we also say that the
interpretation is a model for the expression):

A ground literal [is true in an interpretation I if and only if I is a positive
literal and I € I, or [is a negative literal and [¢ I.

A CNF expression (defined as above) is true in an interpretation if and only if
for all 4 and for all substitutions @ such that (I;1 V... V]; »;)8 is ground, at least
one of the ; ;0 is true in I.

A DNF expression (defined as above) is true in an interpretation I if and only
if there exists an 4 and a substitution 8 such that (4,1 A ... Al; ;)0 is ground,
and all [; ; are true in I.

Let us illustrate this rather complicated definition. It states that e.g. flies V
—bird V —abnormal is true in the interpretations {flies}, {abnormal} but false
in {bird, abnormal}. Similarly, it allows us to say that 3C, T : triangle(T) A
circle(C) A in(C,T) is true in {triangle(t), circle(c), in(c, t), large(c), small(t)}
and false in {triangle(t), circle(c)}. Furthermore, VX : polygon(X)V-square(X)
is true in {square(s), polygon(s)} and in {circle(c)} but false in {square(s)}.

2.1 The Framework of ICL

ICL is a classification system within the framework of learning from interpre-
tations. In this framework, the following choices are made: examples are (Her-
brand) interpretations and a hypothesis covers an example if the hypothesis is
true in the interpretation. ICL can thus be described as follows:

Given a set of positive and negative ezamples, and a language Ly, find a first or-
der theory H C Ly that is complete (covers all positive ezamples) and consistent
(covers no negative ezamples).

At the moment, ICL can learn first order theories in Conjunctive Normal
Form (CNF) and Disjunctive Normal Form (DNF) (see also section 3).

To illustrate the learning from interpretations paradigm and our ICL setting,
we take one of the Bongard problems. These are general problems developed by
the Russian scientist M. Bongard in his book Pattern recognition. Each problem
consists of 12 figures, six of class @ and six of class ©. One example problem
can be found in Fig. 1. The goal is to discriminate between the two classes.

® VoV AV o A
© AP A 4100

o

Q@) 7] | [) B

v A g A | |o A 040

Fig. 1. A Bongard Problem

Each of these figures can be described by a set of facts. Take for instance the
upper left example in Fig. 1. It consists of a small triangle, pointing up, which
is in a large circle. This figure can be described as: I = {triangle(f1), small(f1),
up(f1), circle(f2), large(f2), in(f1,f2)}. The following DNF theory is consistent

and complete: 3X3Y : triangle(Y) A in(Y, X). This theory says that for each
figure of class @ there exists a triangle that is inside another object.

2.2 Practice

Currently, ICL is implemented in ProLog by BIM. Several heuristics (based on
CN2) are incorporated to handle noise. This means that the learned theory need
not be strictly complete and consistent with the training set: a theory might not
cover all positives, and not all negatives need to be excluded by the theory. ICL
has several user-tunable parameters, such as the significance level for significance
tests, the maximum number of literals in disjuncts/conjuncts in CNF/DNF, the
beam size, and the search heuristic. More details on the algorithm (based on the
covering approach of CN2 with unordered rules) and the heuristics can be found
in [7].

To specify the hypothesis language, ICL uses the same declarative bias as
CLAUDIEN, i.e. DLAB (declarative language bias, see [5]). DLAB is a formalism
for specifying an intensional syntactic definition of the language £4. For CNF,
the hypothesis is a conjunction of clauses, and DLAB specifies the allowed syntax
for the head and the body. For DNF, the hypothesis is a disjunction of rules (each
rule being a conjunction of literals), and DLAB specifies the allowed syntax
for the positive and negative literals. This is automatically translated into a
refinement operator (under #-subsumption) for the specified language which is
used by ICL to traverse the search space. A small example:

{false <—- 0-len:[len-len:[lumo(Lumo), 1t(Lumo, 1-1:[-1, -2])],
len-len: [atom(Al, Eleml, Typel, Chargel),
1t(Chargel, 1-1:[-0.2, -0.1, 0, 0.11)11}
Min-Max:List means that at least Min and at most Max literals of List are
allowed (1en is the length of List). Note that lt(Lumo, 1-1:[-1,-2]) is a shorthand
for 1-1:[lt(Lumo, -1), lt(Lumo, -2)].

3 CNF and DNF Representation

Originally, ICL learned a hypothesis in conjunctive normal form (CNF). This is
inherited from its older twin system CLAUDIEN (see [5]).

In [15], R. Mooney presents 2 dual algorithms, one for learning CNF and one
for learning DNF. However, it turns out that the CNF algorithm can be used to
learn DNF formulae provided that the role of the positives and the negatives is
swapped, the negation of the tests is used and the result is negated (this property
was not mentioned in Mooney’s paper). Thus, the CNF version of ICL can be
used to learn DNF. For convenience, we have adapted the output procedure of
ICL-CNF so that it can produce a DNF output.

Experiments indicate there is a difference in classification accuracy when
learning CNF or DNF. In the mutagenesis case this is very clear. Table 1 shows
the theory accuracy for the learned DNF and CNF theory. Theory complexity
also differs. This is important in the light of Mooney’s [15] experiments. He

argued that the reason for the differences in accuracy and complexity can be
explained by the difference in CNF and DNF. From the property above, it follows
that there is an alternative explanation. The differences can be explained as well
by the differences in learning the negative concept instead of the positive one.

4 Multi-class Problems

In the previous sections, ICL has been described as a learning system that can
be applied to problems with 2 classes of examples. Given a set of positive and
negative examples for a class ¢, ICL learns a theory T¢ (in CNF =(D;A...AD,),
in DNF = (C1 V...V C,)) that discriminates between the positive and negative
examples. An unseen example is then classified as class ¢ if the example is a
model for the theory T° (i.e. in CNF: all clauses/disjuncts D; of the theory
cover the example; in DNF: at least one conjunct C; of the theory covers the
example). Otherwise the example is assumed not to be of class c.

In many applications with two classes, this is sufficient. But if we have m
classes, it’s not sufficient to learn just one theory (one would only be able to
discriminate between one class and all the others). We should learn m theories,
one for each class. The question then is, how to apply this set of theories to an
unseen example in order to predict its class? (This is also useful for problems
with two classes, as errors in one theory can be undone by the other theory).

In TCL, we use a similar strategy as in CN2 (see [3]). Given a problem with
m classes (m > 2), we first learn m separate DNF theories for the m different
classes. When merging these theories T}...Tp, into Tpnu1i=(C1,1V...VCipn, V...V
Cm,1.--VCm n.,.), we store with each rule/conjunct C; ; in Tpnyu, the distribution
of covered (training) examples among the classes (this is a vector V; ; of length
m, where the kth element of V; ; is the number of examples of class c; covered
by C; ;). In addition, a default class (the majority class in the training data) is
stored with Tpny1i. Then, given an (unseen) example e and a multi-class theory
Trnuiti, we use the following algorithm to decide on the class of e:

— initialise the vector V of length m with each V=0

— for each conjunct Cj; in Tonuus, if C;; covers e, add V; ; to V.

— if no C; ; covers e (thus all V are 0), return the default class
else, let V; be the maximum in V, and return class k

5 Discretization

The motivation for discretizing numeric data is two-fold and based on findings
from attribute value learning. On the one hand, there is an efficiency concern,
and on the other hand, one may sometimes obtain higher accuracy rates.
Procedures currently used to handle numbers in ILP and those used in older
versions of CLAUDIEN[5], are quite expensive. The reason is that for each can-
didate clause, all values for a given numeric variable have to be generated and
considered in tests. In large databases, the number of such values can be huge,

resulting in a high branching factor of the search. Furthermore, discretization is
done at runtime, i.e. it is repeated for every candidate clause. If one clause is a
refinement of another one, a lot of redundant work may be done.

What we propose is to generate beforehand some interesting thresholds to
test upon. Thresholds are thus computed only once (instead of once for each can-
didate clause considered). The number of interesting thresholds (to be considered
when refining clauses) is also kept to a minimum, yielding a smaller branching
factor. This has also yielded positive results in attribute value learning, cf. [2].

Though we present the procedure as applied in the ICL system, it also gener-
alizes to other ILP systems The discretization procedure is tied with the DLAB
parameter of ICL, which defines the syntax of the clauses that may be part of a
hypothesis. In the template of section 2.2, the user has specified some possible
thresholds for ICL. But where do they come from? Up to now, the user had to
specify them. In most applications, this is not straightforward. We extend ICL
with the capability to produce the possible thresholds itself.

When looking at the DLAB-templates it is often possible to identify a num-
ber of meaningful sub-clauses. We will call such sub-clauses gqueries. One could
consider each such query that involves a numeric argument as a kind of nu-
meric attribute. There is one important difference with regard to attribute value
learning: one example may have multiple values for such a numeric query or
attribute.

In our approach to discretization, the user has to identify the relevant queries
and the variables for which the values are to be discretized. In DLAB:

dlab_template(
’false <—— 0-len:[len-len:[lumo(Lumo), 1t(Lumo, c_lumo)],
len-len: [atom(Al, Eleml, Typel, Chargel),
1t(Chargel, c_charge) 1]’).
dlab_query(c_lumo, 1-1, discretize(lumo(Lumo), Lumo)).
dlab_query(c_charge, 1-1,
discretize(atom(Al, Eleml, Typel, Chargel), Chargel)).
The resulting numeric attributes are then discretized using a simple modification
of Fayyad and Irani’s method, and the result is fed back into the DLAB template.
The details of the Fayyad and Irani’s method can be found in [11] and [9].
Fayyad and Irani’s stopping criterion, which is based on the minimal de-
scription length principle, is very strict, in the sense that the method generates
very few subintervals. When applying this criterion in ICL almost no subinter-
vals would be generated. Therefore, we have chosen to let the method take as
a parameter the desired number of thresholds to be generated (default 20). A
second adaptation made to Fayyad and Irani’s method specifically concerns non-
determinacy. Due to the fact that an example may have multiple or no values for
a numeric attribute, we use a sum of weights instead of the number of examples
in the appropriate places of Fayyad and Irani’s formulae (i.e. when we count the
real values that are less than a threshold, we sum their weights). The sum of the
weights of all values for one numeric attribute or query in one example always
equals one, or zero when no values are given.

6 Experiments

We have done experiments in three domains.

The data in the mutagenesis domain (see [17]) consists of 188 molecules,
of which 125 are active (thus mutagenic) and 63 are inactive. A molecule is
described by listing its atoms atom(AtomID,Element,Type,Charge) (the num-
ber of atoms differs between molecules, ranging from 15 to 35) and the bonds
bond(Atoml,Atom2,BondType) between atoms. For the experiments, we have
used the same four sets of background knowledge as in [17].

The data set for finite element mesh design [8], consists of 5 structures and
has 13 classes (= 13 possible number of partitions for an edge in a structure). In
total, the 5 structures consist of 278 edges (each edge is taken as an example).
The background knowledge is relatively large and contains information on edge
types, boundary conditions, loadings and the geometry of the structure.

The task in the biodegradability domain [10] is to predict the half-time
of aqueous biodegradation of a compound from its chemical structure. The
biodegradation time has been discretized into 4 classes: fast, moderate, slow
and resistant. The structure of a compound is represented by facts about atoms
and bonds, much like in the mutagenesis domain. An additional background
predicate calculates the molecular weight (a real number) for each compound.

We have performed all the experiments with version 3 of ICL for Solaris2.5.
The timings we give have been measured on a SUN Ultra 2 (168Mhz). The
accuracies have been estimated using a n-fold cross-validation (mostly 10-fold).
In some experiments, we used four different settings: for S; and S; the heuristic
is set to laplace, for S3 and S; to m_estimate (with parameter m set to 2). The
significance level is set to 0.99 for S; and Ss3 and to 0.90 for S; and S;.

The mutagenesis domain requires the use of discretization, as it has real
numbers. The mesh design domain requires the multi-class extension of ICL,, as
13 classes are present. The biodegradability domain requires the use of both.

6.1 The Mutagenesis Experiments

Despite the fact that the multi-class feature of ICL is not needed for the muta-
genesis domain, it turns out to be helpful. In table 1 we see that the multi-class
theory always has a higher predictive accuracy than the CNF/DNF theory.

Muta Accuracies (%) Timings (s)
DNF CNF multi-DNF Progol Foil TiLDE|ICL Progol Foil TiLDE
BG1 [79.3 69.7 81.4 76 61 75 |276 117039 4950 93
BG2 (80.3 72.3 81.9 81 61 79 |423 64256 9138 355
BG3 (85.6 82.4 86.2 83 83 85 |440 41788 0.5 221
BG4 (85.1 86.2 88.8 88 82 86 |673 40570 0.5 651

Table 1. Accuracies and timings for the four different backgrounds of the mutagene-
sis data, with setting S (the other three settings give similar results), using manual
discretization. (The results for PRoGOL, FOIL and TILDE have been taken from [1].)

The results in table 1 are obtained by supplying ICL with the possible bound-
aries for real-valued variables manually (the language looks like the dlab in sec-
tion 2.2, but is more complex). Herefore, we needed some insight in the data.
But what if we do not have this knowledge? We can then use the discretization
feature of ICL. Table 2 shows the results of using the same language bias as in
table 1, but using the discretization feature of ICL on the numerical variables.
The results are comparable to the ones in table 1. We also tried to use all val-
ues appearing in the data (a very naive approach) for background 2. Learning
one multi-theory then takes about 10 hours, which is about 30 times slower as
compared to the other experiments! The accuracy is more or less the same.

Muta |Accuracies (%)|Timings (s)
with discretization| DNF CNF multi multi
BG2 79.8 78.2 83.0 835
BG3 85.6 84.0 86.2 840
BG4 84.6 84.6 86.2 947

Table 2. Accuracies and timings of [CL for three different backgrounds of the muta-
genesis data, with setting S; and using the discretization feature.

6.2 The Mesh Design Experiments

In this domain, the use of the multi-class extension is necessary as there are 13
classes. We performed tow experiments for each of the four settings, the results
of which can be found in table 3:

— FEzp;: b runs have been done, each time using the edges of one structure for
testing, and the edges from the other four structures for learning;
— Ezp,: a 10-fold cross-validation.

Mesh| Accuracies (%) | Timings (s)

S S 853 S:|85 S 83 S
Ezp, |46.8 49.3 50.0 49.3|206 211 315 332
Ezp;|65.1 64.7 66.5 70.1|192 190 223 307

Table 3. Results of ICL on the Mesh data (learning a multi-class).

When comparing the performance of ICL on Ezp; with other learning sys-
tems (results taken from [1]), ICL has the highest predictive accuracy: ICL
(50%), TiLDE (36%), FoiL (21%), INDIGO (38%), FFoIL (44%) and Fors (31%).

6.3 The Biodegradability Experiments

While extensive experimentation has been conducted in the other two domains,
the biodegradability domain is a relatively new one. It requires both the multi-
class and the discretization facilities of ICL. Discretization is performed on the

molecular weight and the charge values for individual atoms. The maximum
number of thresholds is set to 20 (the current default).

The best result in this domain was achieved with setting S4: an accuracy of
58.1% as measured by the leave-one-out procedure. These are the best results
achieved so far in this domain (at the time of writing this paper). The problem
is difficult because of the small number of very diverse examples.

7 Conclusion

We have indicated how several well-established attribute value learning tech-
niques can be upgraded for use in the ILP system ICL. This includes the relation
between CNF and DNF, discretization and multi-class problems.

We also showed with some experiments in 3 domains (mutagenesis, biodegrad-
ability and mesh) that ICL performs very good in these three domains.

In the future, we intend to do more experiments in other domains. Also, we
might try other techniques for learning multi-classes, and look further into the
possibilities of discretization.

We have proposed several extensions of the ICL ILP system, based on tech-
niques developed for attribute-value approaches. These include the possibility
to learn constraints on either CNF or DNF, handle multiple classes, and handle
real numbers by using discretization.

These extensions are important for the use of ICL in practical domains,
as demonstrated by our experimental evaluation of the extended ICL on three
practical domains. Multi-class learning can help even when there are only two
classes. Discretization increases efficiency at no cost to accuracy. Finally, learning
DNF may sometimes be advantageous to learning CNF, due to the differences
between learning the positive and learning the negative concept.

Regarding directions for further work, we note that multiple rules/theories
are currently combined using the same approach as in CN2. It might be useful
to look into different possibilities to merge several theories in one multi-class
theory. We might look, for example, into the Bayesian approach used in [16].

Acknowledgements

Wim Van Laer and Luc De Raedt are supported by the Fund for Scientific
Research, Flanders. Saso DzZeroski is supported by the Slovenian Ministry of
Science and Technology. This research is also part of the ESPRIT project no.
20237 on Inductive Logic Programming II.

The Mutagenesis and Mesh datasets are made public by King and Srinivasan
[17] resp. Dolsak [8], and are available at the ILP data repository [13].

More info on ICL: http://www.cs.kuleuven.ac.be/ wimv/ICL/main.html.

References

1. H. Blockeel and L. De Raedt. Experiments with top-down induction of logical

10.

11.

12.

13.

14.
15.

16.

17.

18.

decision trees. Technical Report CW 247, Dept. of Computer Science, K.U.Leuven,
January 1997.

. J. Catlett. On changing continuous attributes into ordered discrete attributes.

In Yves Kodratoff, editor, Proceedings of the 5th European Working Session on
Learning, volume 482 of Lecture Notes in Artificial Intelligence, pages 164-178.
Springer-Verlag, 1991.

. P. Clark and R. Boswell. Rule induction with CN2: Some recent improvements.

In Yves Kodratoff, editor, Proceedings of the 5th European Working Session on
Learning, volume 482 of Lecture Notes in Artificial Intelligence, pages 151-163.
Springer-Verlag, 1991.

L. De Raedt. Induction in logic. In R.S. Michalski and Wnek J., editors, Proceed-
ings of the 3rd International Workshop on Multistrategy Learning, pages 29-38,
1996.

L. De Raedt and L. Dehaspe. Clausal discovery. Machine Learning, 26:99-1486,
1997.

. L. De Raedt and S. Dzeroski. First order jk-clausal theories are PAC-learnable.

Artificial Intelligence, 70:375-392, 1994.

L. De Raedt and W. Van Laer. Inductive constraint logic. In Proceedings of the
5th Workshop on Algorithmic Learning Theory, volume 997 of Lecture Notes in
Artificial Intelligence. Springer-Verlag, 1995.

. B. Dolsak and S. Muggleton. The application of Inductive Logic Programming to

finite element mesh design. In S. Muggleton, editor, Inductive logic programming,
pages 453-472. Academic Press, 1992.

J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised discretiza-
tion of continuous features. In A. Prieditis and S. Russell, editors, Proc. Twelfth
International Conference on Machine Learning. Morgan Kaufmann, 1995.

S. Dzeroski, B. Kompare, and W. Van Laer. Predicting biodegradability from
chemical structure using ILP. Submitted.

U.M. Fayyad and K.B. Irani. Multi-interval discretization of continuous-valued
attributes for classification learning. In Proceedings of the 13th International Joint
Conference on Artificial Intelligence, pages 1022-1027, San Mateo, CA, 1993. Mor-
gan Kaufmann.

M. Genesereth and N. Nilsson. Logical foundations of artificial intelligence. Mor-
gan Kaufmann, 1987.

D. Kazakov, L. Popelinsky, and O. Stepankova. ILP datasets page
[http://waw.gmd.de/ml-archive/datasets/ilp-res.html], 1996.

J.W. Lloyd. Foundations of logic programming. Springer-Verlag, 2nd edition, 1987.
R.J. Mooney. Encouraging experimental results on learning cnf. Machine Learn-
ing, 19:79-92, 1995.

U. Pompe and I. Kononenko. Probabilistic first-order classification, 1997. Submit-
ted.

A. Srinivasan, S.H. Muggleton, M.J.E. Sternberg, and R.D. King. Theories for
mutagenicity: A study in first-order and feature-based induction. Artificial Intel-
ligence, 85, 1996.

L. Valiant. A theory of the learnable. Communications of the ACM, 27:1134-1142,
1984.

This article was processed using the BTEX macro package with LLNCS style

