Noise Elimination in Inductive Concept
Learning: A case study in medical diagnosis

Dragan Gamberger!, Nada Lavra¢? and Saso Dzeroski?

! Rudjer Bogkovié¢ Institute, Bijeni¢ka 54
10000 Zagreb, Croatia
tel. +385 1 4561142, fax +385 1 425497
2 Jozef Stefan Institute, Jamova 39
1000 Ljubljana, Slovenia
tel. +386 61 1773272, fax +386 61 219385
gambi@lelhpl.irb.hr, nada.lavrac@ijs.si, saso.dzeroski@ijs.si

Abstract. Compression measures used in inductive learners, such as
measures based on the MDL (Minimum Description Length) principle,
provide a theoretically justified basis for grading candidate hypotheses.
Compression-based induction is appropriate also for handling of noisy
data. This paper shows that a simple compression measure can be used
to detect noisy examples. A technique is proposed in which noisy exam-
ples are detected and eliminated from the training set, and a hypothesis
is then built from the set of remaining examples. The separation of noise
detection and hypothesis formation has the advantage that noisy exam-
ples do not influence hypothesis construction as opposed to most stan-
dard approaches to noise handling in which the learner typically tries to
avoid overfitting the noisy example set. This noise elimination method
is applied to a problem of early diagnosis of rheumatic diseases which is
known to be a difficult problem, due both to its nature and to the imper-
fections in the dataset. The method is evaluated by applying the noise
elimination algorithm in conjunction with the CN2 rule induction algo-
rithm, and by comparing their performance to earlier results obtained
by CN2 in this diagnostic domain.

1 Introduction

Machine learning systems [15, 17] have been applied to numerous practical prob-
lems. From given training examples, a machine learning system can construct
explicit symbolic rules that generalize the training cases [15, 2]. The rules, in-
duced from the set of training examples, can be used for classification (diagno-
sis/prediction) of new cases.

In an ideal inductive learning problem, the induced rules (hypothesis H) will
‘agree’ with the classifications of the descriptions of all the training examples
E. In practice, however, it frequently happens that data given to the learner
contain various kinds of errors, either random or systematic. Random errors are
usually referred to as noise. Therefore, in most real-life problems the success of
machine learning very much depends on the learner’s noise-handling capability,
i.e., its ability of appropriately dealing with noisy (imperfect) data.

The problem of noise handling has been extensively studied in attribute-value
learning. This problem has been approached in different ways. Noise-handling
mechanisms can be incorporated in search heuristics (e.g., [19]) and in stopping
criteria (e.g., [2]) used in hypothesis construction. Hypotheses fulfilling stopping
criteria may further be evaluated according to some quality measure, giving a
preferential order of hypotheses. In addition, the induced hypotheses can be
subjected to some form of post-processing, such as postpruning and simplify-
ing of decision trees (e.g., [1, 18, 23]). Systems employing such techniques are
called noise-tolerant systems since they try to avoid overfitting the possibly noisy
training set.

The problem of noise handling has been addressed also in inductive logic
programming (ILP) [20, 12] by adapting successful approaches to noise handling
from attribute-value learning. Recently, compression measures [21, 24] that are
theoretically based on the Minimum Description Length (MDL) principle [25]
have gained much attention. These measures provide a theoretically justified
basis for grading candidate hypotheses, integrating a measure of complexity
(simplicity or understandability) and correctness (expected accuracy) into a sin-
gle heuristic measure for hypothesis evaluation. Compression based induction is
appropriate also for handling of noisy data [21].

This paper takes a different approach to dealing with noise. A technique is
proposed that detects and eliminates noisy examples from the training set by
using a simple compression measure. A consistent and complete hypothesis can
be then built from the set of remaining examples by using a learning algorithm
which is not noise-tolerant. The separation of noise detection and hypothesis
formation has the advantage that noisy examples do not influence hypothesis
construction. This is different from the approaches that handle noise in the
hypothesis formation process by trying to avoid overfitting the noisy example
set.

In our approach to noise detection and elimination, we assume an inductive
learning setting consisting of three separate steps: preprocessing of the training
set (described in Section 2), noise detection and elimination (Section 3), and
hypothesis formation. Noise detection and elimination is the main part of this
paper, whereas hypothesis formation is done by using an implementation of
the well-known CN2 algorithm [3]. Section 4 presents the experimental domain
(early diagnosis of rheumatic diseases), the experimental setting and the results
achieved by applying the proposed noise-handling method in this diagnostic
problem. The paper concludes with a discussion and gives directions for further
research.

2 Preprocessing of training examples

The basic algorithm for detecting noisy examples, described in detail in Sec-
tion 3, works for two-class learning problems where positive and negative exam-
ples of a single concept are described by literals (binary features). Therefore, for

each two-class problem, the training examples from FE, described as tuples of
attribute values, need to be mapped to tuples of truthvalues of literals.

The literals are constructed based on the analysis of values of positive and
negative examples in the training set E. For each attribute A;, let v;; (j = 1..ksp)
be k;, different values of the attribute that appear in positive examples in E and
let w;; (j € 1..kin) be the k;, different values of the attribute that appear in
negative examples in E.

— If A; is a discrete attribute, k;;, different literals of the form A; = v;; and

kin different literals of the form A; # w;; are created. In the case that a
positive and a negative example have the same value v;; = w;y of A; then
two literals are created: A; = vy, and A; # wiy.
For illustration, consider a problem with two attributes, A and B, and a
training set of three examples, two positive examples (ag, b1) and (asz, bs) and
a negative example (a1, bz). Then the following literals are created: A # a,
A =ay, A=a3, B=>0;, B=0y, B# by, and the three examples correspond
to the following truthvalue tuples of literals: 110101, 101010 and 000010,
respectively (where 1 stands for true and 0 stands for false). Literals A = a4,
A # as, ... are not even considered since they are either false for all positive
examples (A = ay) or true for all negative examples (A # ay); as such they
are useless for constructing a concept description.

— If A; is a continuous attribute, we first search for all value pairs (viz,wsy),
where © = 1..k;, and y = 1..k;;,, that satisfy the property v;, < w;y, and for
which the ‘neighborhood’ property holds (i.e., no value v;, or w;, of attribute
A; exists such that v;, < v;; < wiy Or vi; < wi; < wiy). For such value pairs,
literals of the form A; < (viz + wsy)/2 are created. In a similar way, for all
neighboring pairs (w;y, viz), where z = 1..k;p, and y = 1..k;,, (i-e., pairs such
that w;y < v;; and such that no other value v;, or w;, exists between values
viz and w;y such that wyy < Vi < Vig OF Wiy < Wy, < Vi holds) literals of
the form A; > (viz + wiy)/2 are created. The motivation is similar to one
suggested in [5].

— If A; is an attribute of type integer, then literals are generated by previously
described procedures as if A; were both discrete and continuous. Depending
on the training set, this may result in literals of four different forms: A; <
(Vig + wiy)/2, A; > (vig + wiy)/2, A; = v;;, and A; # w;;. In an extreme
case, all four literals may be generated.

In our approach, we use an implicit definition of equality for continuous
attributes which allows for all values (also non-integer) in some range. This
has the following advantages. First, by allowing only literals of the form A; <
(vig +wiy)/2 and A; > (vig +w4y) /2 we avoid the precision problem that would
have occurred if literals of the form A; = v;;, say A; = 3.143, were allowed for
continuous attributes. Namely, if the system were to determine the truthvalue
of the literal A; = 3.143 for an example which has value 3.1432 of attribute A;,
should the literal be evaluated as true or false? This decision depends on the
precision applied in the comparison, but this precision is not defined. Moreover,
the fact that continuous attributes do not have literals of the form A4; = 3.143

does not prevent testing whether A; has value 3.143 in the generated rule; a
learner can namely build a condition as a conjunction of elementary literals,
such as for instance (A; > 3.142) A (A; < 3.144). The advantage of constructing
conditions in this form is that they have an explicitly defined precision.

Obviously, the implicit definition of equality introduced for continuous at-
tributes does not make sense for integer valued attributes since in this case the
precision problem does not exist. This is the reason for introducing a separate
type for attributes with integer values.

3 Noise detection and elimination

3.1 Literals and p/n pairs

In this section, we consider a two-class learning problem where the training
set E consists of tuples of truthvalues of literals. For noise elimination, we will
investigate the properties of literals that hold on individual pairs of training
examples, each pair consisting of a positive and a negative example.

Definition 1. Let £ = PU N, where P are positive and N are negative exam-
ples. A p/n pair is a pair of two examples e; and e; such that e; € P and e; € N.
When appropriate, we will use the notation p;/n; for a p/n pair consisting of
p; € Pand n; € N.

Definition 2. Let L denote a set of literals. A literal I € L covers a p;/n; pair
if the literal has value true for p; and value false for nj.3

The notion of p/n pairs can be used to prove important properties of literals
for building complete and consistent concept descriptions [6, 7].

Theorem 1 Assume a training set E and a set of literals L such that a complete
and consistent hypothesis H can be found. Let L' C L. A complete and consistent
concept description H can be found using only literals from the set L' if and only
if for each possible p/n pair from the training set E there exists at least one literal
l € L' that covers the p/n pair.

Proof of necessity: Suppose that the negation of the conclusion holds, i.e.,
that a p/n pair exists that is not covered by any literal | € L'. Then no rule
built of literals from L’ will be able to distinguish between these two examples.
Consequently, a description which is both complete and consistent can not be
found.

Proof of sufficiency: Take a positive example p;. Select from L' the subset
of all literals L; that cover p;. A constructive proof of sufficiency can now be

3 In the standard machine learning terminology we may reformulate the definition of
coverage of p/n pairs as follows: literal ! covers a p;/n; pair if [covers the positive
example p; and does not cover the negative example n;.

presented, based on k runs of a covering algorithm, where k is the cardinality
of the set of positive examples (k = |P|). In the i-th run, the algorithm learns
a conjunctive description h;, h; = l;1 A ... Al;y for all l;;,...0; , € L; that
are true for p;. Each h; will thus be true for p; (h; covers p;), and false for all
n € N. After having formed all the k descriptions h;, a resulting complete and
consistent hypothesis can be constructed: H = hy V...V hg. O

As will be shown in Section 3.3, this theorem plays a central role in noise
elimination. Namely, if the set L is sufficient for constructing a complete and
consistent hypothesis H from FE, several such hypotheses may be found. Among
these, one may prefer the simplest according to some complexity measure. One
possible measure of complexity of a hypothesis H is the number of different
literals that appear in it. Given the sets E and L, the minimal complexity of a
hypothesis that uses literals from L and is complete and consistent w.r.t. E is
denoted by ¢(E, L). In fact, ¢(E, L) = |L'|, where L' is the smallest subset of L
that allows the construction of a hypothesis H consistent and complete w.r.t. E.
As Theorem 1 suggests, one can compute ¢(E, L) without actually constructing
the hypothesis H. This idea plays a central role in noise elimination.

3.2 Background

Let us assume that for the given training set E and the given set of literals
L a consistent and complete hypothesis H (an approximation to an unknown
target theory T') can be found.* Let ¢(E, L) represent the complexity of the
simplest hypothesis complete and consistent with training examples in £ and
built of literals from L. Let us initially fix the set of literals L and study ¢ only
as function of E, i.e. ¢(E, L) = q(E).

Given the sets E and L, assume that the training set £ contains enough train-
ing examples to induce/identify a correct hypothesis H.5 If the set of examples
is large enough to identify the correct hypothesis H then, by adding examples
to E, the complexity of the simplest hypothesis that can be generated from the
enlarged training set will not increase. Let m = |E|. This means that for training
examples €41, €m+2,- - - that were not included in the initial training set E it
holds that:

9(E) = ¢(EU{em1}) = ¢(BU{emt1;emi2}) = -

But if we add to E an example that is inconsistent with the target domain
theory, i.e., an example f that is noisy, then the complexity of the hypothesis

will increase:
g(EU{f}) > q(E).

4 This means that there are no contradictions in the training set, i.e., examples with
same truth values of literals belonging to two different classes, since, as a consequence
of Theorem 1, no complete and consistent hypothesis H can be built from a training
set that contains contradictions.

% Correctness of H means that H is complete and consistent for all, including unseen,
examples of the unknown target theory T'. In other words, H denotes the same
concept as T'.

Theorem 2 Suppose that the set of examples E is non-noisy and is large enough
to enable a unique simplest correct hypothesis H to be generated. By adding an
example to the training set, a new training set is generated E' = EU{e}. If e is
consistent with the unknown target theory T (e is non-noisy), then q(E') = q(E).
If e is inconsistent with T (e is noisy), then ¢(E') > q(E).

Proof:

For a ‘large enough’ training set E consisting of all correct training examples it
must be true that H is the simplest hypothesis that is complete and consistent
with E. If this is not true then either set E is not large enough or H is not the
simplest hypothesis, both being in contradiction with the assumptions of the
theorem. Let gy denote the complexity of H. Then for every E consisting of
non-noisy examples: ¢(E) < gg. For the large enough non-noisy E: ¢(E) = qg.
If e is non-noisy, then E' is a non-noisy set as well and ¢(E') = gu = ¢(E). This
proves the first part of the theorem.

The condition of unique induction of the correct hypothesis H from large
enough E assumed by the theorem means that for £ no other complete and
consistent hypothesis of complexity gg exists. If e is a noisy example then H
is not a complete and consistent hypothesis for E'. A different hypothesis must
be constructed and for this, according to the condition of uniqueness of the
hypothesis H, ¢(E') > qg = q(E) must hold. Note that it is supposed that for
E'" a complete and consistent hypothesis can be constructed. If this is not true
it means that e is in contradiction with some training example from E. In this
case the presence of noise can be detected by the existence of contradictions in
the training set. O

Theorem 2 presents the basis for the suggested noise elimination algorithm.
But it must be noted that the theorem makes use of the definition of a large
enough training set E. In practice it is very hard to verify whether a training
set E is large enough. In practice, there need not exist a unique simplest cor-
rect hypothesis H. The consequence is that the claims of the theorem need not
necessarily hold, which results in imperfect noise detection. The assumption is
that with the increase of the number of non-noisy examples in E, the conditions
of the theorem will be better satisfied thus increasing the probability of success-
ful noise detection. The theorem correctness does not depend on the definition
of the hypothesis complexity function ¢(E), but the sensitivity of this function
can influence the value m, the number of training examples necessary for the
applicability of the theorem.

3.3 The noise elimination algorithm for two-class learning

Now we can try to answer the following question: Does the training set F contain
noise? Based on Theorem 2 we can answer the question in the following way. If

it holds that
q(E) = q(E \ {e})

for all possible examples e € E then there is no noise in the domain and the
domain is large enough for a correct hypothesis H to be induced. If this is not the

case and an example e enables complexity reduction, i.e., ¢(E) > q(E\{e}), then
the example e is potentially incorrect. If there is more than one example whose
elimination can lead to complexity reduction, it is advisable to eliminate only
the one that reduces the complexity the most. The elimination of ‘suspicious’
examples is an iterative process where one example is eliminated in each iteration
until no elimination can result in further complexity reduction.

Theorem 1 can be used as a basis for the implementation of an efficient
algorithm for noise elimination. Let the heuristic estimate of the complexity of
the hypothesis ¢(E, L) be defined as the minimal number of literals |L'| needed to
build a complete and consistent hypothesis H. The minimal set L' can be selected
from L by either the heuristic or the exhaustive literal minimization algorithm
of [6, 13]. The basic idea of the heuristic noise elimination algorithm is to use
the minimal subset L', L' C L, and to answer the following question: ‘Can any
of the literals in L' be made unnecessary for building a complete and consistent
hypothesis if one (or a few) training example(s) are eliminated?’ The practical
applicability of the proposed approach follows from the observation that, in most
cases, for a noisy example e; a set L} can be found such that L C L', where L}
covers all p/n pairs of the set E'\ {e;}. The noisy examples that do not have this
property will not be detected by the noise elimination algorithm. The heuristic
noise elimination algorithm (Algorithm 1), which employs the heuristic literal
minimization algorithm (Algorithm 2) is presented below.

Algorithm 1: Heuristic noise elimination

Given: set of literals L, quality function ¢(E,L) = |L'| (i.e. the number of
literals in the minimal set L), noise sensitivity parameter ey,
Input: training set E with m examples
Output: pruned example set E
repeat
find by heuristic search a minimal subset L' of L such that a complete
and consistent hypothesis H(E, L') can be built (Algorithm 2)
for all examplese; € E (i =1...m) set weight w(e;) =0
repeat for all literals [€ L'
find the minimal subset E' of examples by whose elimination the
literal I can be made unnecessary (Procedure 1)
for all examples e; € E' compute w(e;) = w(e;) + 1/|E'|
endrepeat
select the example e; with greatest weight w(e;)
if w(e;) > e, then eliminate e; from E and begin a new iteration with
E=E\{e;}Jandm=m—1
else stop example elimination
endrepeat

The literal minimization algorithm (Algorithm 2) employing heuristic search
is outlined below.

Algorithm 2: Heuristic minimization of literals

Input: set of literals L, set of all p/n pairs PN
Output: minimal set of literals L'
initialize the set of p/n pairs not covered by any literal PN':= PN
initialize the minimal set of literals L':= ()
for each p/n € PN’ compute the weight v(p/n) = 1/z where z is the
number of literals that satisfy the pair
while not covered p/n pairs exist do
select an uncovered p/n pair from PN' (called ps/ns) that can be cov-
ered by the least number of literals (i.e., p/n with the maximal value
of v(p/n))
for each I € L covering ps/n, compute w(l) = > v(p/n) where summa-
tion is over all uncovered p/n pairs from PN' covered by |
select the literal I, with the maximal w(l) value and include it in the
set of selected literals L' := L' U {l,}
remove from the set of uncovered p/n pairs PN’ all p/n pairs covered
by the selected literal I
endwhile

The algorithm results in a list of selected literals L' which is the heuristically
selected minimal literal set.

Algorithm 1 calls another procedure which, for the given subset L' and some
literal [€ L', determines the minimal subset of examples that must be elimi-
nated in order to make !/ unnecessary when building a complete and consistent
hypothesis.

Procedure 1: Finding the mininal example set for elimination

Input: a set of literals L' such that a complete and consistent hypothesis
H(E,L'") can be generated, a literal | € L'
Output: the minimal set of examples E' that should be eliminated in order to
make | unnecessary
find all p;/n; pairs that are covered by ! and not covered by any other
literal from L'
form set P’ consisting of all p; examples
form set N' consisting of all n; examples
if |P'| < |N'| then E' = P’ is the minimal example set
else E' = N' is the minimal example set

3.4 The noise elimination algorithm for multi-class learning

The basic algorithm for detecting noisy examples described in Section 3.3, works
for two-class learning problems where positive and negative examples of a single
concept are described by literals (binary features). This section describes how
to perform noise elimination for disjoint multi-class problems.

Given an example set E of a multi-class learning problem, the elimination of
noisy examples is performed as follows.

1. For each of the N classes c;, create a two-class learning problem: examples
that belong to class ¢; become the positive examples for learning the concept
¢;j and all other examples become the negative examples of this concept. Each
pair (e;,¢;) € E is thus mapped into a new pair (e;, ¢;;), where ¢;; = 1 if
¢; = ¢; and ¢;; = 0 otherwise.

2. Transform each pair (e;, ¢;;), where e; is described by attribute values, into a
pair (f(e;),ci;) where f(e;) is a tuple of truthvalues of literals (see Section 2
describing this transformation). This results in new example sets E;, j =
1..N.

3. For each of the N two-class learning problems, a set of noisy examples 0;- is
detected by applying Algorithm 1 (see Section 3.3). Let O; = {e; | f(e;) €
oL}

4. Fijnally, the noisy examples O; of each Ej; are eliminated from the original
multi-class training set E. This results in a reduced training set

NE=E\ (J 0,
j=1..N

A learning algorithm that assumes a noiseless training set can be now applied
to the reduced training set N E.

4 Experimental evaluation

4.1 Early diagnosis of rheumatic diseases

Correct diagnosis in the early stage of rheumatic disease is a difficult problem.
Having passed all the investigations, many patients can not be reliably diagnosed
after their first visit to the specialist. The reason is that anamnestic, clinical,
laboratory and radiological data of patients with different rheumatic diseases
are frequently similar. In addition, diagnosis can also be incorrect due to the
subjective interpretation of data [22].

Data about 462 patients were collected at the University Medical Center in
Ljubljana [22]. There are over 200 different rheumatic diseases which can be
grouped into three, six, eight or twelve diagnostic classes. As suggested by a
specialist, eight diagnostic classes were considered [8] in this experiment. The
names of diagnostic classes and the number of patients per class (in parentheses)
is as follows: Al - degenerative spine diseases (158), A2 - degenerative joint dis-
eases (128), B1 - inflammatory spine diseases (16), B234 - other inflammatory
diseases (29), C' - extraarticular rheumatism (21), D - crystal-induced synovi-
tis (24), E - nonspecific rheumatic manifestations (32), and F - nonrheumatic
diseases (54).

To facilitate the comparison with earlier experiments in rule induction in
this domain [11], the experiments were performed on anamnestic data, with-
out taking into account data about patients’ clinical manifestations, laboratory

and radiological findings. The sixteen anamnestic attributes are as follows: sex,
age, family anamnesis, duration of present symptoms (in weeks), duration of
rheumatic diseases (in weeks), joint pain (arthrotic, arthritic), number of painful
joints, number of swollen joints, spinal pain (spondylotic, spondylitic), other pain
(headache, pain in muscles, thorax, abdomen, heels), duration of morning stiff-
ness (in hours), skin manifestations, mucosal manifestations, eye manifestations,
other manifestations and therapy. Some of these attributes are continuous (e.g.,
age, duration of morning stiffness) and some are discrete e.g., joint pain, which
can be arthrotic, arthritic, or not present at all).

4.2 Experimental setting and previous results

The goal of our experiments is to show the utility of noise elimination in learning
from noisy data. Since the ultimate test of the quality of induced rules is their
performance on unseen examples, experiments were performed on ten different
random partitions of the data into 70% training and 30% testing examples. In
this way, ten training sets E; and ten testing sets T;, ¢ = 1..10 were generated.
These are the same training and testing sets as used by Lavrac et al. [11, 12],
from where the results of CN2 on the original datasets are taken. In these exper-
iments, CN2 [4] was applied with and without its significance test noise-handling
mechanism. When using the significance test in CN2, a significance level of 99%
was applied. For an eight class problem, this corresponds to a threshold 18.5
for the value of the likelihood ratio statistic (see the Appendix). The other CN2
parameters had default values [3]. Algorithm 1 was used for noise elimination.
The noise sensitivity parameter € had its default values: 1.5 for training sets
with 2-50 examples (training sets for diagnoses B1, B234, C, D, E), 1.0 for
51-100 examples (F), 0.75 for 101-200 examples (A1, A2) and 0.5 for more than
200 examples (no such training set).

Previous experiments [11, 12] show that the CN2 noise-handling mechanism
improves the classification accuracy, but decreases the relative information score
(see the Appendix for the definition of the relative information score). These
results are reproduced in Table 1, columns Original CN2-ST and Original CN2-
NoST.

4.3 Results of noise elimination

In our experiments, we tested the performance of the noise elimination algorithm
(outlined in Sections 3.3 and 3.4) by comparing the results achieved by CN2
before and after noise elimination. Noise elimination resulted in reduced datasets
NE;, ..., NEjy. Rules were induced by CN2 from N E;, while the accuracy and
relative information score were measured on T}, ¢ = 1..10. These results are given
in columns Reduced CN2-NoST of Table 1.

In order to observe the effect of noise elimination, the reader should compare
the results in columns Original CN2-NoST and Reduced CN2-NoST of Table
1. On the other hand, in order to compare the noise elimination algorithm to
the CN2 noise-handling mechanism using the significance test, the reader should

accuracy relative information score
Original| Original Reduced ||Original| Original Reduced
Partition||CN2-ST|CN2-NoST CN2-NoST||CN2-ST|CN2-NoST CN2-NoST
1 47.5 38.1 45.3 17.0 21.0 26.0
2 45.3 44.6 44.6 20.0 23.0 28.0
3 51.1 45.3 47.5 17.0 19.0 24.0
4 44.6 43.9 38.8 17.0 24.0 20.0
5 46.0 40.3 41.7 21.0 22.0 25.0
6 49.6 48.2 50.4 15.0 26.0 24.0
7 44.6 42.4 46.8 21.0 27.0 31.0
8 41.0 38.8 43.2 21.0 19.0 25.0
9 43.9 45.3 48.2 16.0 23.0 29.0
10 39.6 41.7 43.2 23.0 23.0 25.0
Average || 45.3 42.9 45.0 18.8 22.7 25.7

Table 1. Accuracy and relative information score

compare the columns Original CN2-ST and Reduced CN2-NoST in Table 1.
This is actually the most interesting comparison since, in terms of classification
accuracy, CN2 with significance test (CN2-ST) is known to perform well on noisy
data.

The elimination of noisy examples increases the classification accuracy from
42.9% to 45.0%. This increase is statistically significant at the 96% level accord-
ing to the one-tailed paired t-test. This result is in favor of our expectation that
the elimination of noisy examples is useful for concept learning. The effect of
noise-handling by the noise elimination algorithm (accuracy 45.0%) is compara-
ble to the effect of the significance test (accuracy 45.3% achieved by CN2-ST);
the difference in performance is not significant.

In terms of relative information score, substantial improvements are achieved
by applying the noise elimination algorithm. The relative information score sig-
nificantly increases (from 22.7% to 25.7%) after the elimination of noisy exam-
ples. Particularly favorable is the comparison between the noise elimination and
the significance test used as the CN2 noise-handling mechanism: there is an al-
most 7 % difference in favor of noise elimination, i.e., an increase from 18.8% to

25.7%.

5 Discussion and further work

This paper presents a method for noise detection and elimination for inductive
learning and its application in the domain of early diagnosis of rheumatic dis-
eases. The latter is indeed a difficult problem, as reflected by the relatively low
classification accuracy results achieved by various learning algorithms [1, 22, 8,
11, 12].

The results achieved in this study show the adequacy of the elimination of
noisy examples as a noise-handling mechanism. On the reduced datasets, ob-
tained by applying our noise elimination procedure, the CN2 learning algorithm
without its noise-handling mechanism (significance test) yielded accuracies com-
parable to those of CN2 with its noise-handling mechanism (significance test)
on the original datasets. More importantly, noise elimination resulted in signifi-
cantly better relative information scores, thus improving the overall performance.
These relative information scores are the best scores achieved with CN2 in this
domain [11, 12].

The results presented here show the potential of the noise elimination ap-
proach. While elimination of noisy examples is well suited for domains with
few errors in the data (results of experiments with controlled amounts of noise
added to a noiseless dataset [7]), our experiments indicate that it can also yield
good results in a very noisy domain. Further experimental evaluation of the
noise elimination approach is planned, in particular on other medical datasets
that are usually used to compare the performance of different machine learning
algorithms [4].

Acknowledgements

This research was financially supported by the Slovenian Ministry of Science and
Technology, the Croatian Ministry of Science and the ESPRIT Project 20237
Inductive Logic Programming II. The authors are grateful to the specialists
of the University Medical Center in Ljubljana who helped collecting the data,
especially to Vladimir Pirnat. Aram Karali¢ and Igor Kononenko prepared the
data in a form appropriate for the experiments. Sago Dzeroski was an ERCIM
Fellow at the German National Research Center for Information Technology
(GMD), Sankt Augustin, Germany at the time of writing this paper.

References

1. Cestnik, B., and Bratko, I. (1991). On estimating probabilities in tree pruning.
In Proc. 5th European Working Session on Learning, pages 138-150. Springer,
Berlin.

2. Clark, P. and Niblett, T. (1989). The CN2 induction algorithm. Machine Learning,
3(4): 261-283.

3. Clark, P. and Boswell, R. (1991). Rule induction with CN2: Some recent im-
provements. In Proc. 5th European Working Session on Learning, pages 151-163.
Springer, Berlin.

4. Dzeroski, S., Cestnik, B., and Petrovski, I. (1993) Using the m-estimate in rule
induction. Journal of Computing and Information Technology, 1: 37-46.

5. Fayyad, U.M. and Irani, K.B. (1992). On the handling of continuous-valued at-
tributes in decision tree generation. Machine Learning, 8: 87-102.

6. Gamberger, D. (1995). A minimization approach to propositional inductive learn-
ing. In Proc. 8th FEuropean Conference on Machine Learning, pages 151-160.
Springer, Berlin.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Gamberger, D., and Lavraé, N. (1996). Noise elimination in inductive learning.
Technical report IJS-DP-7400, J. Stefan Institute, Ljubljana, 1996.

Karali¢, A., and Pirnat, V. (1990). Machine learning in rheumatology. Sistemica
1(2): 113-123.

Kononenko, I. and Bratko, I. (1991). Information-based evaluation criterion for
classifier’s performance. Machine Learning, 6(1): 67-80.

Kononenko, I., and Kukar, M. (1995). Machine learning for medical diagnosis.
In Proc. Workshop on Computer-Aided Data Analysis in Medicine, 1JS Scientific
Publishing, IJS-SP-95-1, Ljubljana.

Lavrag¢, N., Dzeroski, S., Pirnat, V., and Krizman, V. (1993). The utility of back-
ground knowledge in learning medical diagnostic rules. Applied Artificial Intelli-
gence, T: 273-293.

Lavrag¢, N. and Dzeroski, S. (1994). Inductive Logic Programming: Techniques and
Applications. Ellis Horwood, Chichester.

Lavrag¢, N., Gamberger, D., and Dzeroski, S. (1995). An Approach to Dimension-
ality Reduction in Learning from Deductive Databases. In Proc. 5th International
Workshop on Inductive Logic Programming. Katholieke Universiteit Leuven, 1995.
Lavra¢, N., Dzeroski, S., and Bratko, I. (1996). Handling imperfect data in in-
ductive logic programming. In L. De Raedt (ed.) Advances in Inductive Logic
Programming. pages 48-64. I0S Press, Amsterdam.

Michalski, R., Carbonell, J., and Mitchell, T., editors (1983). Machine Learning:
An Artificial Intelligence Approach, volume I. Tioga, Palo Alto, CA.

Michalski, R., Mozeti¢, 1., Hong, J., and Lavra¢, N. (1986). The multi-purpose
incremental learning system AQ15 and its testing application on three medical
domains. In Proc. Fifth National Conference on Artificial Intelligence, 1041-1045.
Morgan Kaufmann, San Mateo, CA.

Michie, D., Spiegelhalter, D.J., and Taylor, C.C., editors (1994). Machine Learn-
ing, Neural and Statistical Classification. Ellis Horwood, Chichester.

Mingers, J. (1989). An empirical comparison of pruning methods for decision tree
induction. Machine Learning, 4(2):227-243.

Mingers, J. (1989). An empirical comparison of selection measures for decision-
tree induction. Machine Learning, 3(4): 319-342.

Muggleton, S., editor (1992). Inductive Logic Programming. Academic Press, Lon-
don.

Muggleton, S., Srinivasan, A., and Bain, M. (1992). Compression, significance and
accuracy. In Proc. 9th International Conference on Machine Learning, 338-347.
Morgan Kaufmann, San Mateo, CA.

Pirnat, V., Kononenko, I., Janc, T., and Bratko, I. (1989). Medical analysis of
automatically induced rules. In Proc. 2nd European Conference on Artificial In-
telligence in Medicine, pages 24-36. Springer, Berlin.

Quinlan, J.R. (1987) Simplifying decision trees. International Journal of Man-
Machine Studies, 27(3): 221-234.

J.R. Quinlan.(1990) Learning logical definitions from relations. Machine Learning,
5(3): 239-266.

J. Rissanen. (1978) Modeling by shortest data description. Automatica, 14: 465—
471.

Appendix: Significance and information score

Significance

CN2 can use a significance measure to enforce the induction of reliable rules. A
rule is deemed reliable (significant) if the class distribution of the examples it
covers is significantly different from the prior class distribution as given by the
entire training set. This is measured by the likelihood ratio statistic [3].

Suppose a rule covers r; examples of class ¢;, 4 € {1,...,N}. Let ¢; = r; /(r1 +
...+7n) and let p; be the prior probability of class ¢;. The value of the likelihood
ratio statistic is then

N
20r1 + ... +7N) Y diloga(ai/pi)
i=1

This statistic is distributed as x2 with N — 1 degrees of freedom. If its value is
above a specified significance threshold, the rule is deemed significant.

Information score

A recent implementation of CN2 [4] can measure the classification performance
of induced rules in terms of the relative information score [9], as well as in terms
of the classification accuracy.

The relative information score is a performance measure which is not biased
by the prior class distribution. It accounts for the possibility to achieve high ac-
curacy easily in domains with a very likely majority class by taking into account
the prior probability distribution of the training examples.

Let the correct class of example e be ¢y, its prior probability py = p(cy) and
the probability returned by the classifier p;, = p'(cx). The information score of
this answer is:

I { —loga(pr) + loga(p),) Dy > Dk
er) =
loga(1 — pi) — loga(1 — p}) p), < Pk

As I(ey) indicates the amount of information about the correct classification
of ey, gained by the classifier’s answer, it is positive if pj, > pi, negative if the
answer is misleading (pj, < px) and zero if pj, = pi.

The relative information score I. of the answers of a classifier on a testing
set consisting of examples eq, ea, ..., e; belonging to one of classes ¢, ¢, ..., CN
can be calculated as the ratio of the average information score of the answers
and the entropy of the prior distribution of classes:

Lo S Ier)
— N pi loga(p:)

This article was processed using the IXTgX macro package with LLNCS style

I, =

