Journal of Intelligent Information Systems, 3, 1-20 (1994)
© 1994 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Discovering Dynamics: From Inductive Logic
Programming to Machine Discovery

SASO DZEROSKI SASO.DZEROSKI@IJS.SI
LIJUPCO TODOROVSKI LIUPCO.TODOROVSKI@IJS.SI
Institut Jozef Stefan, Jamova 39, 61111 Ljubljana, Slovenia

Editor: Gregory Piatetsky-Shapiro

Abstract. Machine discovery systems help humans to find natural laws from collections of
experimentally collected data. Most of the laws found by existing machine discovery systems
describe static situations, where a physical system has reached equilibrium. In this paper, we
consider the problem of discovering laws that govern the behavior of dynamical systems, i.e.,
systems that change their state over time. Based on ideas from inductive logic programming and
machine discovery, we present two systems, QMN and LAGRANGE, for discovery of qualitative
and quantitative laws from quantitative (numerical) descriptions of dynamical system behavior.
We illustrate their use by generating a variety of dynamical system models from example behaviors.

Keywords: machine discovery, machine learning, dynamical system identification

1. Introduction

The task of modeling natural and artificial dynamical systems, i.e., systems that
change their state over time, is omnipresent. Usually, dynamical systems are
described by a set of differential equations which completely specify the rate of
change of each of the system variables. To make the modeling task easier, qualita-
tive formalisms, such as QDE (Qualitative Differential Equations) [Kuipers, 1986],
use qualitative relationships to describe dependencies among the system variables,
which do not necessarily specify the rates of change of the system variables in a com-
plete and precise manner. In QDE, the states of the system variables are described
as pairs of qualitative values and directions of change and qualitative relationships
are defined over sequences of such state descriptions, i.e., qualitative behaviors.

Considerable effort has been devoted to the problem of automating the task of
building qualitative models from example behaviors [Bratko, et al. 1992; Coiera,
1989; Dzeroski & Bratko, 1992; Kraan, et al. 1991]. Viewing qualitative models as
logic programs and formulating the QDE constraints in logic, Bratko et al. [1992]
and Dzeroski and Bratko [1992] used systems for inductive synthesis of logic pro-
grams (inductive logic programming [Muggleton, 1992; Lavra¢ & Dzeroski, 1994])
to automatically synthesize qualitative models from example behaviors. MISQ
[Kraan, et al. 1991], a re-incarnation of GENMODEL [Coiera, 1989], can generate
a qualitative model from a numerical trace by translating the numerical trace into
a qualitative behavior, from which a qualitative model is then generated.

2 S. DZEROSKI AND L. TODOROVSKI

The task of identification of dynamical systems, as addressed in this paper, is to
find a set of laws that describe the dynamics of the system from a given example
behavior. More precisely, a set of real-valued system variables is measured at regular
intervals over a period of time, as illustrated in Table 1. The laws to be discovered
(also called a model of the dynamical system) typically take the form of a set of
qualitative or ordinary differential equations. We also refer to this task as the task
of discovering dynamics.

Table 1. A behavior trace of a dynamical system.

Time System variables

X, X, .. Xn
to 10 20 e Tno
to+h 11 21 . Tpl
t0+Nh 1N EoON N

The first part of the paper describes QMN (Qualitative Models from Numerical
traces), a system that generates qualitative models from numerically described be-
haviors directly, without translating them to qualitative behaviors. To this end,
QMN assumes the original numerical interpretation of the qualitative constraints
used in QDE [Kuipers, 1986], which include addition, multiplication and time
derivation. A generate and test methodology is used in QMN, similar to the ones
used in GENMODEL [Coiera, 1989] and MISQ [Kraan, et al. 1991].

It turns out that there is only a short step from the automatic generation of qual-
itative differential equations from numerical traces to the generation of ordinary
differential equations from numerical traces. The latter can be viewed as the prob-
lem of discovering quantitative empirical laws about dynamical systems. Although
there exists a variety of systems for discovery of quantitative empirical laws, they
have not addressed the problem of discovering dynamics. This problem is addressed
by the discovery system LAGRANGE, described in the second part of the paper.

Initially, LAGRANGE was to use a very simple process: give the derivatives of
the observed system variables and the system variables themselves, observed over
a period of time, to an existing discovery system. The latter would then produce a
set of laws (differential and algebraic equations) describing the observed behavior.
However, existing discovery systems, such as BACON [Langley, et al. 1987] and
FAHRENHEIT [Zytkow & Zhu, 1991], were not suitable for use in LAGRANGE as
they ask for additional data or consider dependencies between two variables only.

We thus had to develop a discovery mechanism to be used within LAGRANGE,
which does not ask for additional data and considers dependencies among several
variables at the same time. It is based on multidimensional linear regression, and
introduces new terms by multiplication, following ideas from inductive logic pro-
gramming and from machine discovery systems.

Section 2 describes QMN, a system that generates qualitative models from nu-
merically described behaviors. The use of QMN is illustrated in Section 3, where its

DISCOVERING DYNAMICS 3

application to the behaviors of two dynamical systems is described. LAGRANGE;,
a machine discovery system that constructs quantitative models, i.e., sets of alge-
braic and differential equations, is described in Section 4. The experiments with
LAGRANGE, which involve the construction of models for several dynamical sys-
tems, are described in Section 5. Related work is discussed in Section 6. Finally,
Section 7 concludes and elaborates on several directions for further work.

2. The QMN algorithm

QMN (Qualitative Models from Numerical traces) generates a qualitative model
from a numerically described dynamical system behavior. QDE [Kuipers, 1986]
constraints on the system variables are used in the generated qualitative model.
The constraints are taken from the repertoire given in Table 2.

Table 2. QDE constraints tested in QMN.

QDE Constraint Meaning
const(F) F is constant over time
deriv(Fy, F») F; is the time derivative of F, i.e., F5(t) = %Fl ()
minus(Fl,Fg) FJ = —F2
Mt (F, F) F), monotonically increases with Fy
M~ (F,, F,) F), monotonically decreases with F5
add(F,,F;, F3) Fi +F =F;
mult(Fl,Fg,Fg) F1 *F2 :F3

The input to QMN is a behavior trace of a dynamical system, such as the one
given in Table 1. In addition, the values of four parameters have to be specified.
These are: the order o of the dynamical system (the order of the highest derivative
in the dynamics equations), the maximum depth d of new variables introduced by
combining old variables, and two tolerances, € and §, used when testing qualitative
constraints. Optionally, the dimensions of the system variables can be specified.

Taking the set of system variables S = {X1,..., Xn}, QMN first introduces their
time derivatives (up to order o). It then introduces new variables by repeatedly
applying the basic arithmetic operations to the variables from S and their time
derivatives. Finally, given the set of all (old and new) variables, it generates and
tests all possible qualitative constraints over these variables.

The time derivatives of the system variables are introduced by numerical deriva-
tion (lines 3-6 of the QMN algorithm), using the formula [Bohte, 1991] (p. 73)

1

= m(mi—z —8 - zi_1+8 Zit1 — Tita)

z;
where z; and z; are the values of variables X and its time derivative X = dX/dt at
time point tg+2h. As numerical derivation can lead to large errors, due care should
be exercised and derivatives should be measured whenever the measurement error
is lower than the corresponding numerical derivation error.

4 S. DZEROSKI AND L. TODOROVSKI

1. QMN(S, o, d, €,6):
2. Introduce-time-derivatives
3. V=S5
4. forall v € S do
5. vy =V
. d
6. forz::ltoodoV::VU{Evi_l}
7. Introduce-new-variables
8. Vi =V
9. for k .= 2 tod do
10. Vi i =0
11. forall (v,u) € V} x V41 do
12. Oy =v+1u
13. Syu =V—U
14. My =V *U
15. dyu =v/u
16. Vi := Vi U {Gu,u, Sv,us Mo,u;, dv,u}
17. V=VUuV
18. Generate-and-test-qualitative-constraints
19. M:=0
20. forall v € V do
21. if Satisfied(const(v), €, §) then M := M U {const(v)}
22. forall (v,u) €V x V do
23. if Satisfied(deriv/minus/M* /M~ (v,u), €, §)
24. then M := M U {deriv/minus/M* /M~ (v,u)}
25. forall (v,u,w) €V xV x V do
26. if Satisfied(add/mult(v,u, w), €, §)
27. then M := M U {add/mult(v,u, w)}

28. return(M)

The system variables and their time derivatives are then combined pairwise in
all possible ways, using the four basic arithmetic operations (lines 8-17). Only
variables of the same dimension may be added and subtracted. The values of the
new variables at all time points are calculated as the new variables are introduced.
Finally, qualitative constraints are generated and tested (lines 19-27).

The testing of all constraints is based on testing the constraint zero(T), which
holds when the variable T represents the constant zero within the tolerances €
and 6. More precisely, a variable T' is considered to represent the constant zero if
P(|T| > é) < €. This probability is approximated with the proportion of measure-
ments for which |T| > § holds. The parameter § is, in fact, a numerical precision

DISCOVERING DYNAMICS b}

tolerance, and the parameter € allows the constraint to be considered satisfied even
if a small proportion (€) of measurements are not consistent with it.

Testing of the QDE constraints, implemented in the procedure Satisfied, is done
as follows:

e A system variable X is considered constant, i.e., constraint const(X) satisfied,
if the constraint zero(X — X) is satisfied within the tolerances € and é.

e To test whether Y is a derivative of X, the numerical derivative of X, X is first
computed. The constraint zero(Y —X) is then tested, and if satisfied within the
tolerances € and 6, Y is considered a derivative of X i.e., deriv(X,Y) satisfied.
Note that the dimensions of X and Y (if specified) have to satisfy the constraint
dim(Y') = dim(X)/[s], where [s] denotes time (seconds).

e The constraint minus(X,Y) is tested by testing whether zero(X+Y) is satisfied
within the tolerances € and §. X and Y should be of the same dimension (if
specified).

o To test add(X,Y, Z) and mult(X,Y, Z), the constraints zero(Z — X —Y') and
zero(Z — X -Y) are tested. The dimensions of the variables (if specified) have
to satisfy dim(X) = dim(Y) = dim(Z) for the add(X,Y, Z), and dim(Z) =
dim(X) - dim(Y) for the mult(X,Y, Z) constraint.

e To test M+(X,Y), we check that for (almost) all time points t; and t;,
(X¢; > Xy, © Yy, > Y;,). More precisely, M*(X,Y) is considered satisfied
if P(DX - DY < 0/|DX| > 6§ A|DY| > §) < €, where DX = X;, — X;, and
DY =Y;, — Y;;. Similarly, M~ (X,Y) is considered satisfied if P(DX - DY >
0/|DX| > 6 A|DY| > é) < €. In this case, there are no dimension constraints
for X and Y.

Let us now consider the computational complexity of QMN. If we let g denote
the number of variables of depth at most k, i.e., gx = |Vk|, we have ¢ = (o + 1)n
and gx < 4g1gx_1, which gives gz = O((4n(o + 1))%) variables at the end of the
process of introducing new variables. The number of const constraints tested is
O(qq), the number of deriv, minus, Mt and M~ constraints is O(qd)z, and the
number of add and mult constraints is O(qd)?’.

Each of the qualitative constraints const, deriv, minus, add and mult takes O(N)
to test (N +1 is the total number of time points in the example behavior). Namely,
the calculation of the variables that are tested for representing the constant zero
takes O(N), and the counting necessary to test the constraint zero also takes O(N).
The counting needed for testing M+ and M~ takes O(N?), as there are N? pairs
of values for the variables considered. Thus, testing M+ and M~ takes O(N?).
The total time complexity of QMN is then

O(N?(4n(o + 1))?? + N(4n(o + 1))3%).

6 S. DZEROSKI AND L. TODOROVSKI

3. Experiments with QMN

The experiments with QMN proceeded as follows: A set of differential equations,
modeling a real-life dynamical system was first chosen, as well as appropriate values
of the parameters involved. The initial state for the system variables, the integra-
tion step h for solving the differential equations and the number N of integration
steps were next selected. The differential equations were then integrated using the
fourth-order Runge-Kutta method [Press, et al. 1986] (pp. 550-554). The ob-
tained behavior was then given to QMN, which generated a set of qualitative laws.
Dimensional information on the system variables was also given to QMN.

QMN was applied to two dynamical systems which have been used earlier as test
examples for the automatic generation of qualitative models. These are the U-tube
system and the cascaded tanks system [Kraan, et al. 1991]. The parameters € and
6 were set to 0.01 and 0.001. QMN is written in the C programming language
and was run on a Sun SPARC IPC workstation. The running times for the two
experiments described below (d = 1) were of the order of one minute.

3.1. The U-tube

The U-tube system consists of two containers, A and B, connected by a thin pipe
and filled with liquid to levels I4 and lg, respectively. The difference in the levels
causes the liquid to flow through the pipe from one container to the other. The
change of the liquid levels is described by the following differential equations:

Iy = c(ip—1la) (1a)
Ip = —ly (1b)

The initial state 14(0) = 10, Ip(0) = 210 was assumed, as well as the parameter
value ¢ = 2. The equations were then simulated for N = 1000 integration steps of
h = 0.01 time units. The resulting behavior was then given to QMN.

When only the derivatives of the new variables are introduced (d = 1), the fol-
lowing qualitative model is generated by QMN:

deriv(lp ,.ljg) deri'u(lA,.l;q) minus(l;q,ljlg)
M+(ZA;ZB) M+(ZB,Z{1) M_(ZA,ZB)
M~(la,la) M~(lg,lp) M~ (la,lB)

When new variables are introduced (d = 2), 362 constraints are found to be
consistent with the example behavior. These include constraints that are typically
included in the qualitative model of the U-tube, such as M*(l4,lp —l4), but also
other constraints that happen to be true in the particular behavior. For example,
the constraint const(l4 + Ig) is true for the above behavior.

In addition, various redundant constraints (that can be derived from other con-
straints) are generated, e.g., const(ly + lp) and add(ly —lp,lp — la,la + 1B). As

DISCOVERING DYNAMICS 7

these are numerous, future versions of QMN might benefit from a path-finding
(graph connectedness) approach, similar to the one in MISQ [Kraan, et al. 1991].
The latter retains only a subset of constraints which connects all system variables.

3.2. The cascaded tanks

The cascaded tanks system has been used to illustrate the use of MISQ [Kraan, et
al. 1991] for learning qualitative models of dynamical systems. It consists of two
tanks (A and B), where liquid flows from the first into the second. The first tank
has a constant inflow. The whole system can be described by the following model

’I,A = C (23“)
lA = ’I:A — 04 (Qb)
Iz = o4—op (2¢)
oA = c3V lA (Qd)

op = 02\/5 (2e)

where 724 is the inflow into tank A, o4 and op are the outflows from tanks A4 and
B and lg, Ig are the corresponding liquid levels. The values ¢; = 200 and ¢; = 13
were chosen for the parameters and the behavior of the system was simulated from
the initial state 14(0) = 10000, 15(0) = 0 for N = 1000 steps of b = 0.01 time units.

Given the above behavior and the parameter settings o = 0 (no derivatives) and
d = 1 (no new variables), QMN found the following qualitative constraints:

const(ig) Mt(la,04) Mt(lg,0B)

The settings o = 1,d = 1 produces the following ten new constraints, in addition
to the five deriv constraints and the three constraints above. Note that the con-
straints add(o4,l4,%4) and add(op,lp,04) are typically found in the QDE model
of the cascaded tanks dynamical system.

const(is) M¥(la,04) M~(la,la) M~ (la,04) M~ (o4,la)
M~ (0o4,04) add(oa,la,i4) add(op,lp,04) add(is,04,04) add(is,oB,0B)

For comparison, MISQ generated a subset of the above model from a numerical
trace of a behavior of the cascaded tanks system [Kraan, et al. 1991]. The system
variables given to MISQ are 24, l4, 04, I, 0B, l4 and g, as it does not introduce
new variables. Note that both MISQ and QMN use dimensional information to
reduce the number of constraints which are generated and tested.

The behavior trace given to MISQ was not the same as the one given to QMN.
Namely, MISQ generates a qualitative model from a numerical trace by translating
the numerical trace into a qualitative behavior, from which a qualitative model
is then generated. However, the transformation process is rather simplistic and
encounters problems with numerical precision when given the same trace as QMN.

8 S. DZEROSKI AND L. TODOROVSKI

QMN avoids problems with numerical precision and noise by using the tolerances
e and §. As MISQ is implemented in Prolog, efficiency would also be a problem
when dealing with the long numerical trace given to QMN.

The reason that MISQ generated a subset of the model generated by QMN is that
MISQ only retains a subset of the constraints consistent with the behavior. The
subset retained should be sufficient to connect all given variables. (The model gives
rise to a graph in which variables are nodes and there is an arc between X and Y
if X and Y appear together in a model constraint. The variables are connected if
the graph corresponding to the model is connected.)

4. The LAGRANGE algorithm

While QMN generates a set of qualitative differential equations from an example
behavior, LAGRANGE generates a set of ordinary (quantitative) differential equa-
tions. It may also generate algebraic equations that contain no time derivatives.
An early version of LAGRANGE is described in [Dzeroski &Todorovski, 1993].

The input to LAGRANGE is a behavior trace of a dynamical system, of the same
form as the one given to QMN (Table 1). Dimensions for the system variables are
optional. In addition, the values of five parameters have to be specified. These are:
the order o of the dynamical system (the order of the highest derivative appearing
in the dynamics equations), the maximum depth d of new terms introduced by
combining old terms (variables), the maximum number r of independent regression
variables used for generating equations, and two tolerances, tg and tg, used when
testing equations.

The LAGRANGE algorithm consists of three main stages. Taking the set of sys-
tem variables S = {X3,...,X,}, LAGRANGE first introduces their time deriva-
tives (up to order o). It then introduces new variables (terms) by repeatedly ap-
plying multiplication to variables from S and their time derivatives. The values
of the new variables (terms) at all time points are calculated as the variables are
introduced. Finally, given the set of all variables, LAGRANGE generates and tests
equations by using linear regression.

The first stage introduces the time derivatives of the system variables and is
identical to the corresponding stage of QMN (Section 2). During the second stage,
new variables are introduced in two ways. First, for each system variable that is
measured in radians, i.e., represents an angle, the corresponding sine and cosine
are added to the current set of variables (line 8). Second, the variables in V are
combined by multiplication to introduce as new variables all terms (products) of
degree d or less (lines 9-13). Terms of depth k are gathered in V. The depth of a
term H?:l X;% is defined as k = E?zl a;. For example, the term X sin X5 is of
depth two and the term X?Xz is of depth four.

Equations are generated and tested in the third stage (lines 15-27). Roughly
speaking, each subset of V sized at most r + 1 is used to generate a linear equation.
The term with greatest depth (complexity) is chosen as the dependent variable (ties

DISCOVERING DYNAMICS 9

are resolved arbitrarily) and is expressed as a linear combination of the remaining
ones. The constant coefficients in the linear equation are calculated by applying
linear regression (line 20). If the equation appears to be significant, i.e., the corre-
sponding criteria exceed the prespecified thresholds, it is added to the model.

1. LAGRANGE(S, o, d, r, tg, ts):

2. Introduce-time-derivatives

3. V=S5

4. forall v € S do

5. Vg =V

. d

6. forz::ltoodoV::VU{Evi_l}

7. Introduce-new-variables

8. forall v € S such that dim(v) = [rad] do V := V U {sinz, cos z}

9. Vi =V
10. for k :=2toddo
11. Vi =0
12. forall (v,u) € Vi x Vz_1 do Vi := V, U {v -u}

13. V=VUW
14. Generate-and-test-equations-using-linear-regression
15. M =0
16. for i :=0to r do
17. forall R € P(V) such that |R|=4+ 1 do
18. Select a dependent variable y € R
19. R := R\ {y}
20. Linear-Regression (y,R,c,0.,Vg,Vs)
21. if(VR > 1—tR)/\(V5 Sts) then
22. R =R
23. ¢ =c
24. forall z € R such that |¢z| < 0., do R’ := R'\ {z}
25. if R’ # R then Linear-Regression (y,R' ¢/ ,0./,Vg,Vs)
26. M =MuU{y=c,+ Zc’zm}
zeR'
27. return(M)

The Linear-Regression procedure, taken from [Volk, 1958], calculates the values
of the coefficients ¢g,c1, ..., ¢y In the linear equation y = ¢p + E;-n:l cjzj so as to
minimize the sum of squares E (calculated in line 7), i.e., to fit the measured
data (X, y) as close as possible. It also calculates the deviations o¢,,0¢,,...,0c,,

of these coefficients (line 8). Finally, the significance criteria are evaluated: the
multiple correlation coefficient Vg and the normalized deviation Vg (lines 11-12).

10 S. DZEROSKI AND L. TODOROVSKI

1. Linear-Regression (y,{z1,23,...,2Zm}, ¢,0¢,Vr,Vs)
1 10 T390 e Lm0
1 L11 91 e LTm1
2. X .=
1 LIN ©T2N <. LmN
T
3. y::[yo Y .. yN]
4, V.= (XTX)!
5. c:[co Ci ... Cm]T::Vy
6. fori:=0to N do y; :=cp + E;'n:1 cjzji
T BE=Y -
8. for j .= 0 to m do a'cj2 =G40+ E/(N +1—m)
T
9. Oc = [Ocy O, o,]
0. 7= (Tilew)/(N +1)
11. Vel =1-E/YN (v —7)°
19, Vs? = E/(N+1)
Fite 7
13. return(c,o.,Vg,Vs)

The multiple correlation coefficient Vg (usually called R [Volk, 1958]) takes values
from the interval [0,1]. The higher Vg, the more significant the equation. An
equation is significant if Vg > 1 — tg. The default value of tg is 0.01.

The normalized deviation Vg is defined as the ratio of the average error of ap-

proximation y/E/(N + 1) and the average g of the dependent variable. The term

e~¥ is added to the denominator to avoid division with zero and does not change
the value of Vg significantly, unless ¥ & 0, in which case Vg essentially equals the
average error of approximation. Vs takes values from the interval [0,00). The
lower Vg, the more significant the equation. An equation is considered significant
if Vg < ts. The default value of tg is 0.01.

If m =0, i.e., the linear equation considered is of the form y = ¢g, a perfect fit
would cause a division with zero in the calculation of Vg. Thus, only Vg is used as
a significance criterion in this case. Note that Vg = 0 implies Vg = 1, but not vice
versa. Therefore, Vs is a more discriminative criterion.

Before a significant equation is added to the model, the independent variables z
for which |ez| < o(ez) are removed from the equation (line 24 of the LAGRANGE
algorithm). This may affect the coefficients of the other independent variables.
Consequently, the Linear-Regression procedure is invoked again to calculate the
new coefficients (line 25).

An analysis of the computational complexity of the LAGRANGE algorithm, in
terms of the parameters n, N, o, d and 7, is given below. To calculate the total
number of terms used for generating equations observe that |V3| < (o + 3) - n and
[Va| < |Vi||Vk—1|, which gives |[Vi| = O(((0 + 3)n)¥). This yields a total number

DISCOVERING DYNAMICS 11

of terms |V| = O(((e+ 3)n)d) at the end of the second stage. The total number
of regressions tried is O(|V|"t1), i.e., O(((0 + 3)n)3"+1)). Taking into account the
complexity of the linear regression procedure O((m + 1)3 +N(m+ 1)2), where m
is the number of independent variables, and N >> m, the total complexity of
the LAGRANGE algorithm is O(Nr?((o + 3)n)d(r+1)). While it is exponential in
the parameters d and r, we should note that small values of these parameters are
usually sufficient for real dynamical systems.

5. Experiments with LAGRANGE

The experiments with LAGRANGE were performed analogously to the ones with
QMN: a set of differential equations, modeling a real-life dynamical system was
first chosen, as well as appropriate values of the parameters involved and the initial
state for the system variables. The differential equations were then integrated
using the fourth-order Runge-Kutta method [Press, et al. 1986] (pp. 550-554) for
N = 1000 steps of A = 0.01 time units. The obtained behavior was then given to
LAGRANGE, which generated a set of equations describing the behavior.

LAGRANGE is implemented in the C programming language and was run on a
Sun SPARC IPC workstation. It was applied to several problems in the domains of
fluid dynamics (the U-tube and the cascaded tanks), population growth (population
dynamics) and mechanical dynamics (the inverted pendulum). Table 3 gives an
overview of the experiments conducted with LAGRANGE. For each domain, the
dimension of the system (number of system variables) is given, as well as the values
of the parameter settings for LAGRANGE. These include the order o, the depth
d, and the number of regression variables r, as well as the significance thresholds
(tolerances) tg and ts. Finally, the number of equations generated in each domain
and the corresponding running time is given.

Table 3. An overview of the experiments conducted with LAGRANGE.

Domain Variables Parameters Equations Time [s]
o d T tR ts

U-tube 2 1 1 2 0.01 o0.01 6 2.67

Cascaded tanks 2 1 2 4 0.01 0.0002 3 83.75

Population dynamics 2 1 2 2 001 0.01 2 9.77

Inverted pendulum 2 2 3 2 0.01 0.0001 4 1484.80

The parameters o,d, and r in LAGRANGE were set to reflect the complexity of
the original models, i.e., differential equations. The significance thresholds tg and
ts were set to 0.01 as a default, except for the two cases where this produced too
many equations. In these cases, the S criterion was used to distinguish among the
equations, and was progressively lowered until a reasonable number of equations was
obtained. Note that no additional runs of LAGRANGE are necessary when lowering
the significance thresholds; it is sufficient to filter out the equations satisfying the
higher, but not the lower thresholds.

12 S. DZEROSKI AND L. TODOROVSKI

5.1. The U-tube

From the behavior of the U-tube dynamical system described in Section 3.1, LA-
GRANGE generated the following equations:

Ip = 210—14 (3a)
la = 420—4l, (3b)
Iy = —420+4lp (3¢)
Ip = —420+4ly (3d)
Ip = 420—4lp (3e)
Ipg = —la (3f)

The first equation expresses the law of mass (volume) conservation, while the last
equation is the same as Equation (1b) in the original model. Equations (3b) and
(3¢) can be obtained from Equation (la), by taking into account Equation (3a).
Finally, Equations (3d) and (3e) can be obtained from Equations (3b) and (3c) by
taking into account Equation (3f).

5.2. The cascaded tanks

While the cascaded tanks system was described by a model containing five variables
(Equations (2a-2e)) in Section 3.2, two variables are essentially enough to describe
this dynamical system. This is reflected in the following model, which is equivalent
to the one mentioned above:

s = ¢ —co/la (4a)
Ip = c3/la—co/lp (4b)

From the behavior described in Section 3.2, LAGRANGE generated three equa-
tions under the parameter settings given in Table 3. The ts parameter was lowered
from the default 0.01 to 0.0002 to obtain a small number of equations. Namely, the
default values of tg and tg resulted in 474 equations. Thus, ts was progressively
lowered. The best two equations (R = 1 and lowest values for S) are given below.

L0 = —40000 + 16914 + 4001 (5a)

5. = —16914 + 16915 + 40015 — 2lal5 (5b)
Equation (5a) can be obtained by expressing v/I4 from Equation (4a) and squar-
ing both sides of the resulting equation. Equation (5b) can be obtained by adding
Equations (4a) and (4b), expressing /I, squaring both sides of the resulting equa-
tion and finally subtracting Equation (5a).

DISCOVERING DYNAMICS 13

5.3. Population dynamics

A Volterra-Lotka model of periodic behavior can be used to model the coexistence
of prey and predator populations [Babloyantz, 1986] (p. 145). For example, take
the populations of lynxes and hares. The latter are grazing on grass (we assume un-
limited supply of grass), and the former are carnivores that hunt hares (we assume
hares are their only food). If the hare population is large, the lynx population grows
fast. This causes many hares to be eaten, thus diminishing the hare population to
the point where there is not enough food for the lynxes. The lynx population con-
sequently decreases, and hares can multiply much faster. This behavior is depicted
in Figure 1, where N; denotes the size of the hare and N, the size of the lynx
population.

1000 1000
800 / 800
600 600
N,
400 > 400
200 200
0 0 S T T T I
Time 0 200 400 600 800 1000

Ny
Figure 1. The oscillatory behavior of the sizes of the hare and lynx populations.

The oscillatory behavior of the sizes of the hare and lynx populations can be
described by the following model:

Nl = klNl - SN1N2 (6&)
N2 = 5.N1N2 _k2N2 (6b)

Choosing the initial hare and lynx populations to be N1(0) = 10 and N5(0) = 140,
the predation (s), growth (k1) and the death (k2) rates to be s = 0.01, k; = 1.6, and
ks = 0.2, and integrating the differential equations for N = 1000 steps of A = 0.01
time units results in the behavior shown in Figure 1.

Given the above behavior, LAGRANGE discovered the following two equations,
which can be obtained by algebraic manipulation of each of the two equations in
the original model, and are thus equivalent to original model.

NN, = 160N; — 100N, (7a)
N, N, 200N5 — 100N, (7b)

14 S. DZEROSKI AND L. TODOROVSKI

iy ///E s

e

Figure 2. The inverted pendulum.

5.4. The inverted pendulum

The task of balancing the inverted pendulum is a standard benchmark problem for
testing classical and modern approaches to the control of dynamical systems [Geva
& Sitte, 1993; Urbanci¢ & Bratko, 1994]. The inverted pendulum consists of a
cart that can move along a horizontal track, and a pole hinged on top of the cart,
so that it can rotate in the vertical plane defined by the track and its fixed point
(Figure 2). A force parallel to the track can be applied to the cart.

The system variables in this case are z, the distance of the cart from the origin
point on the track, and ¢, the inclination angle of the pole relative to the vertical
line through its fixed point (Figure 2). The dynamics of the inverted pendulum
can be described by a system of second order differential equations. Although the
explicit form of the equations (expressing & and @) looks quite complicated, the
equivalent implicit form listed below is quite manageable. In the equations, M and
m are the masses of the cart and the pole, respectively, [is the length of the pole,
F the force applied to the cart, and g = 9.81 is the gravitational acceleration.

1
(M +m)i + §ml(¢ cosp — p?sing) = F (8a)
2
Z cosp + §l<p = gsinep. (8b)

Taking M = 1[kg], m = 0.1[kg], and I = 1[m], the following behavior was
simulated. Initially, the cart is at the origin and the pole is inclined to the left
(z(0) = 0,9(0) = 37/16), both being immobile (2(0) = 0,¢(0) = 0). The cart is
then pushed to the left with a constant force of F = 7.5[N]. This results in the pole
passing through the vertical position and finally falling down to the right, while the
cart is moving left all the time. The pole falls down after N = 133 integration steps
of h = 0.01 seconds.

In this experiment, the quality criterion S was used to discriminate among the
equations considered. The threshold value ts was set to ts = 10™*, as the default
parameter values for tg and tg resulted in a large number of equations. The value

DISCOVERING DYNAMICS 15

of tg was progressively lowered in several trials, until the number of equations

produced by LAGRANGE was manageable.

cos’p = 1—sin’p (9a)
Zcosp = —0.67Tp+9.81singp (9b)
@lsing = —1504 222 + @cosp (9¢)
Zcospsing = 9.81 — 0.67@sing — 9.81 cos? @ (9d)

Given the time series for @, ¢, z, and ¢, and the settings described above, LA-
GRANGE discovered Equations (9a-9d). The first equation expresses the known
relationship between the sine and the cosine of an angle. Equations (9b) and (9c¢)
are equivalent to the original Equations (8b) and (8a), respectively. Finally, Equa-
tion (9d) can be obtained by multiplying Equation (8b) by sin ¢ and taking into
account Equation (9a).

6. Related work

The QMN and LAGRANGE systems, described above, are related to several areas
in the fields of qualitative reasoning and machine learning. These include auto-
matic generation of qualitative models, inductive logic programming and machine
discovery. They are also related to work on identification of dynamical systems.

Both LAGRANGE and QMN use a generate and test approach, similar to exist-
ing systems for automatic generation of qualitative models from example behaviors,
such as GENMODEL [Coiera, 1989] and MISQ [Kraan, et al. 1991]. In addi-
tion, QMN addresses precisely the same problem as MISQ, namely the problem of
generating qualitative models from numerical behavior traces. Finally, QMN was
preceded by attempts to learn QDE [Kuipers, 1986] models of dynamical systems
[Bratko, et al. 1992; Dzeroski & Bratko, 1992], which relied on inductive logic pro-
gramming [Muggleton, 1992; Lavra¢ & Dzeroski, 1994] systems to induce models
from example qualitative behaviors and background knowledge consisting of logical
definitions of the QDE constraints.

QMN and LAGRANGE are inspired and benefit from ideas developed in the field
of inductive logic programming in several ways. First of all, QMN addresses a prob-
lem that has also been tackled by the GOLEM [Bratko, et al. 1992] and mFOIL
[Dzeroski & Bratko, 1992] systems for inductive logic programming. Second, both
QMN and LAGRANGE introduce new variables in the same way as new variables
are introduced by determinate literals in LINUS [Dzeroski, et al. 1992]. Finally,
they are also related to CLAUDIEN [De Raedt & Bruynooghe, 1993], which per-
forms clausal discovery by systematically generating clausal integrity constraints
and testing them for consistency with a given database.

Following the LINUS approach to inductive logic programming [Lavrac, et al.
1991; Dzeroski, et al. 1992], LAGRANGE was initially to introduce as new vari-
ables the time derivatives of the given system variables and then apply existing

16 S. DZEROSKI AND L. TODOROVSKI

machine discovery systems on the transformed problem. However, two basic re-
quirements have to be satisfied by a machine discovery system to be used on the
transformed discovery problem. First, it must be able to find laws involving more
than two variables from observational data only, i.e. without asking for additional
experiments. Second, it must be able to find a set of laws rather than a single
one, where all laws hold for the domain as a whole and it is not explicitly stated
beforehand which of the variables involved are dependent and which independent.

Existing discovery systems, such as BACON [Langley, et al. 1987], ABACUS
[Falkenheiner & Michalski, 1990] and FAHRENHEIT [Zytkow & Zhu, 1991], satisfy
the first or second criterion, but none of them meets both criteria in a satisfactory
way. Systems like BACON and FAHRENHEIT typically propose experiments and
require the outcomes to be provided, thus violating the first criterion. Regarding
the second criterion, ABACUS and FAHRENHEIT are able to discover more than
one law in a domain. However, these laws usually hold in disjoint subspaces of the
domain. There have also been some ideas about discovering a set of simple laws
from observational data with BACON, but they have not actually been incorporated
into BACON. Thus, none of the above systems meets both of the above criteria in
a satisfactory way. .

The Equation Finder [Zembowicz & Zytkow, 1992], used as a module in FAHREN-
HEIT, comes closest to meeting the above requirements. Given a set of real-valued
pairs (z4,¥i), it tries to find a formula ¥ = f(X), without asking for additional
data. The main problem with Equation Finder is that it is looking for a function
of one variable only. In dynamical systems, however, the value of a system variable
at a certain point in time can depend on the present and past values of several
system variables. This makes the ability to discover equations with more than two
variables a necessity.

One of the important features of Equation Finder is the ability to handle errors
in the input data. Such a feature is necessary for handling real-life data. It is also
important that the convergence of Equation Finder and its sensitivity to errors in
the input data have been thoroughly studied [Zembowicz & Zytkow, 1992].

Although the machine discovery community has not paid much attention to dy-
namical systems, it has recently recognized the need for techniques that can handle
such systems [Bielecki, 1992]. Also, the IDS [Nordhausen & Langley, 1990] sys-
tem touches upon the problem of discovering dynamics. The qualitative schemata
generated by IDS can be considered qualitative states of a system. The transi-
tions between states (schemata) capture in a way the qualitative change of the
system over time, i.e., its global dynamics. They are more of the phase transition
type, rather than continuous state changes as described by differential equations.
However, numerical laws within the qualitative states could, in principle, include
time-dependent variables.

Finally, QMN and LAGRANGE are related to work in the area of dynamical sys-
tem identification, which addresses essentially the same problem as LAGRANGE.
In mainstream system identification, as summarized by Ljung [Ljung, 1993], the
assumption is that the model structure, i.e., the form of the differential equations

DISCOVERING DYNAMICS 17

is known. The task is then to determine suitable values for the parameters ap-
pearing in the model, so that the model fits the observed behavior. Linear model
structures are most often used. In contrast, QMN and LAGRANGE do not assume
a prespecified model structure, but rather explore a space of equations (which can
be nonlinear) and report those that are consistent with the observed behavior.

7. Discussion

The most important contribution of our work is the extension of the scope of ma-
chine discovery to dynamical systems. Namely, QMN and LAGRANGE are able to
construct a set of qualitative, respectively ordinary, differential equations describ-
ing a given behavior of a dynamical system. In this way, they extend the scope of
machine discovery systems from high-school physics to college physics.

It is also important that QMN and LAGRANGE are able to generate a set of laws,
involving more than two variables, from observational data only. This is in contrast
with some machine discovery systems, which perform problem decomposition to
find laws involving more than two variables. In practice, these systems keep some
variables constant and require experiments that vary the others. This is impossible
in many cases, especially in the context of dynamical systems, as the scientist might
not have full experimental control over all the system variables.

QMN brings several improvements over existing approaches to automatic genera-
tion of qualitative models. First, it can introduce new variables, while GENMODEL
[Coiera, 1989] and MISQ [Kraan, et al. 1991] cannot. Second, QMN can handle nu-
merical precision and noise problems through the built-in tolerances, which MISQ
cannot handle. Finally, QMN is more efficient than MISQ. The inductive logic
programming approaches to automatic generation of qualitative models also have
problems with the introduction of new variables [Bratko, et al. 1992; Dzeroski
& Bratko, 1992]. Namely, new variables introduced by adding existing qualita-
tive variables do not have uniquely determined values, i.e., are indeterminate, and
cause computational complexity problems. One of our original motivations for the
development of QMN was to avoid the problem of indeterminacy (adding quan-
titatively valued system variables yields unique outcomes). We consider QMN to
be a stepping stone from the area of learning qualitative models, which intersects
inductive logic programming, to the area of machine discovery, where LAGRANGE
is situated.

LAGRANGE is unique among machine discovery systems in its ability to discover
laws that govern the behavior of dynamical systems. Although it might be regarded
as a small extension of existing discovery algorithms, it can handle a very large class
of new problems. Our work on LAGRANGE is very much in the BACON tradition
[Langley, et al. 1987], showing that one can handle a large number of apparently
complex laws with very simple discovery mechanisms. This is demonstrated by the
successful use of LAGRANGE for generating models of several dynamical systems
from simulated data, including two fluid dynamics models, a population dynamics
model, and the inverted pendulum model. In all cases; LAGRANGE generated

18 S. DZEROSKI AND L. TODOROVSKI

models correctly describing the given behaviors. Judging on the successful use
of LAGRANGE in building models of dynamical systems, we conclude that LA-
GRANGE is a promising step towards the application of machine discovery to real
dynamical systems. As the task of identification of dynamical systems (discovering
dynamics) is omnipresent, LAGRANGE is potentially applicable to a wide variety
of real-life problems.

Several directions for further work appear promising at present. The problem
of handling noise and measurement errors has to be addressed first. Extending
the space of models/equations explored promises wider applicability, but further
increases the computational complexity. In this respect, the use of domain specific
knowledge has to be considered. Finally, the integration of both logical condi-
tions and numerical laws in the discovered models deserves attention from both the
inductive logic programming and the dynamical system identification perspective.

The highest priority in improving LAGRANGE is the handling of measurement
errors and noise in the input data, which is necessary for practical applications.
Experiments on the domains presented in this paper with artificially introduced
noise have shown that LAGRANGE is very sensitive to noisy data [Krizman, 1994].
The numerical derivation process has been identified as the main cause of this
problem. To alleviate it, the GOLDHORN system [Krizman, 1994], a descendant of
LAGRANGE, employs two remedies: digital filtering and numerical integration. An
appropriately different fitting mechanism, the downhill simplex method [Press, et
al. 1986] is used to determine the parameter values in the equations. GOLDHORN
also searches for differential equations that explicitly express the highest derivatives
in terms of the system variables and their derivatives of lower order. In this way, it
sidesteps the redundancy problem present in LAGRANGE. Finally, let us mention
that, in addition to successfully reconstructing dynamical system models from noisy
data, GOLDHORN has been successfully applied to two real-life domains.

Although at present new terms are introduced by multiplication only, other trans-
formations, such as those used in Equation Finder could be easily incorporated
within LAGRANGE. The number of new terms would significantly increase in this
case and would require reduction of the search complexity. Heuristics should thus
be used to reduce the number of new terms introduced. In addition, the terms
for linear regressions should be chosen in a more intelligent way. Depending on
the transformations used, the linear regression procedure may become unsuitable
for determining the appropriate values of the equation parameters. This is the
case when the equations considered are nonlinear in their parameters. Nonlinear
optimization, which is computationally expensive, has to be used for such cases.

An alternative approach could be the use of genetic search techniques, which
would not systematically generate and test all possible equations, but stochastically
explore a subset of the space of possible equations. This would allow for reasonable
time complexity even in cases where the space of possible equations is much larger
than the one exploited by LAGRANGE. Dzeroski and Petrovski [1994] report on
preliminary experiments along the above lines. Their approach can also use domain
specific knowledge in the form of substructures (subexpressions) that are likely to

DISCOVERING DYNAMICS 19

appear in the model of the dynamical system. This is a compromise between
completely specifying the model structure, as in mainstream system identification,
and not specifying any structure, as in LAGRANGE.

The inductive logic programming system CLAUDIEN [De Raedt & Bruynooghe,
1993] systematically generates logical constraints and tests them for consistency
with a given database. This is very similar to the approach taken in LAGRANGE,
which systematically generates equations and tests them for consistency with a
given behavior. The similarity suggests the possibility of integration [Van Laer &
De Raedt, 1993]. Adding the arithmetic predicate mult(X,Y, Z) as background
knowledge in CLAUDIEN, as well as a predicate implementing linear regression,
CLAUDIEN would encompass both the numerical law capabilities of LAGRANGE
and the ability to use logical conditions in the generated models. Recent research in
the area of dynamical system identification [Ljung, 1993] suggests that such models
are of great practical interest.

Acknowledgements

The research described in this paper has been funded by the Slovenian Ministry
of Science and Technology and in part by the ESPRIT III Basic Research Project
No.6020 Inductive Logic Programming. This paper was written during the visit
of Saso Dizeroski to the Katholieke Universiteit Leuven, Belgium, supported by
the Commission of the European Communities under grant CIPA3510920370. We
would like to thank Ivan Bratko, Luc De Raedt, Djani Juri¢i¢, Boris Kompare, Pat
Langley, Bojan Orel, Tanja Urbanci¢ and Jan Zytkow for the stimulating discussions
and suggestions regarding the work described in this paper.

References

[1] Babloyantz, A. (1986). Molecules, Dynamics, and Life. John Wiley & Sons, New York.

[2] Bielecki, M. W. (1992). Machine discovery approach to dynamic systems in the real labora-
tory. ML92 Workshop on Machine Discovery. Aberdeen, Scotland.

[3] Bohte, Z. (1991). Numerical Methods. The Society of Mathematicians, Physicists and As-
tronomers of Slovenia, Ljubljana, Slovenia.

[4] Bratko, I., Muggleton, S., and Varsek, A. (1992). Learning qualitative models of dynamic
systems. In Muggleton, S., editor, Inductive Logic Programming, pages 437-452. Academic
Press, London.

[5] Coiera, E. (1989). Learning qualitative models from example behaviors. Third International

Workshop on Qualitative Physics. Stanford, CA.

[6] De Raedt, L. and Bruynooghe, M. (1993). A theory of clausal discovery. In Proc. Thir-
teenth International Joint Conference on Artificial Intelligence, pages 1058-1063. Morgan
Kaufmann, San Mateo, CA.

[7] Dzeroski, S. and Bratko, I. (1992). Handling noise in inductive logic programming. Second
International Workshop on Inductive Logic Programming. Tokyo, Japan.

[8] Dzeroski, S. and Petrovski, I. (1994). Discovering dynamics with genetic programming. In
Proc. Seventh Furopean Conference on Machine Learning. Springer, Berlin. To appear.

20

S. DZEROSKI AND L. TODOROVSKI

Dzeroski, S. and Todorovski, L. (1993). Discovering dynamics. In Proc. Tenth International
Conference on Machine Learning, pages 97-103. Morgan Kaufmann, San Mateo, CA, 1993.

Dzeroski, S., Muggleton, S., and Russell, S. (1992). PAC-learnability of determinate logic
programs. In Proc. Fifth ACM Workshop on Computational Learning Theory, pages 128—
135. ACM Press, New York.

Falkenheiner, B. and Michalski, R. (1990). Integrating quantitative and qualitative discovery
in the ABACUS system. In Kodratoff, Y. and Michalski, R., editors, Machine Learning: An
Artificial Intelligence Approach, pages 153-190. Morgan Kaufmann, San Mateo, CA.

Geva, S. and Sitte, J. (1993). A cartpole experimental benchmark for trainable controllers.
IEEE Control Systems, 13(5):40-51.

Kraan, I., Richards, B., and Kuipers, B. (1991). Automatic abduction of qualitative models.
Fifth International Workshop on Qualitative Physics. Austin, TX.

Krizman, V. (1994) Handling noisy data in automated modeling of dynamical systems. MSc
Thesis, Faculty of Electrical and Computer Engineering, University of Ljubljana, Slovenia.

Kuipers, B. (1986). Qualitative simulation. Artificial Intelligence, 29(3):289-338.

Langley, P., Simon, H., Bradshaw, G., and Zytkow7 J. (1987). Scientific discovery. MIT
Press, Cambridge, MA.

Lavrag¢, N. and Dzeroski, S. (1994) Inductive Logic Programming: Technigues and Applica-
tioms. Ellis Horwood, Chichester.

Lavra¢, N., Dzeroski, S., and Grobelnik, M. (1991). Learning nonrecursive definitions of
relations with LINUS. In Proc. Fifth Furopean Working Session on Learning, pages 265—
281. Springer, Berlin.

Ljung, L. (1993). Modelling of industrial systems. In Proc. Seventh International Symposium
on Methodologies for Intelligent Systems, pages 338—349. Springer, Berlin.

Muggleton, S., editor (1992). Inductive Logic Programming. Academic Press, London.

Nordhausen, B. and Langley, P. (1990). A robust approach to numeric discovery. In Proc.
Seventh International Conference on Machine Learning, pages 411-418. Morgan Kaufmann,

San Mateo, CA.

Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1986). Numerical
Recipes. Cambridge University Press, Cambridge, MA.

Urbanci¢, T. and Bratko, I. (1994) Learning to control dynamic systems. In Michie, D.,
Spiegelhalter, D., and Taylor, C., editors, Machine Learning, Neural and Statistical Classi-
fication. Ellis Horwood, Chichester. In press.

Van Laer, W. and De Raedt, L. (1993). Discovering quantitative laws in inductive logic
programming. MLnet Workshop on Machine Discovery. Blanes, Spain.

Volk, W. (1958). Applied Statistics for Engineers. McGraw-Hill, New York.

Zembowicz, R. and Zytkow7 J. (1992). Discovery of equations: experimental evaluation of
convergence. In Proc. Tenth National Conference on Artificial Intelligence, pages 70-75.

MIT Press, Cambridge, MA.

Zytkow7 J. and Zhu, J. (1991). Application of empirical discovery in knowledge acquisition.
In Proc. Fifth European Working Session on Learning, pages 101-117. Springer, Berlin.

