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Abstract

Machine discovery is concerned with the task
of finding laws from experimental and/or ob-
servational data. Existing machine discovery
systems have mostly generated laws describ-
ing static situations. The paper presents LA-
GRANGE, a system that constructs a set of
differential and/or algebraic equations that
describe an observed behavior of a dynamic
system. As such, LAGRANGE extends the
scope of machine discovery to dynamic sys-
tems. We show that LAGRANGE is able
to generate appropriate sets of laws for sev-
eral nonlinear dynamic systems from traces
of their behavior.

1 Introduction

Consider a simple biological experiment. We place
some nutrient and some bacteria in a jar of water. Hav-
ing done this, we keep the water temperature constant
and observe (at regular time intervals) how the con-
centrations of food and bacteria in the water change
over time. Their behavior might look as shown in Fig-
ure 1, where ¢ denotes the nutrient concentration and
z denotes the bacteria concentration.

Typically, the task of a scientist would be to construct
a model of the process that takes place in the jar. Vari-
ous kinds of models may be constructed, but by far the
most common are differential equations. The behav-
ior of the above biological system can be described by
the Monod equations [Jorgensen and Johnsen 1989
(p- 301):
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Figure 1: Behavior of a Simple Biological System.

The system variables of the dynamic system are ¢ (nu-
trient concentration) and z (bacteria concentration).
We define the constants to be pi,q, = 0.1, kg = 0.01,
ks = 100, and y = 0.6. The above differential equa-
tions, combined with the initial state ¢¢ = 300 and
o = 2, predict the behavior shown in Figure 1.

One would expect a machine discovery system to help
the scientist construct a model of the kind illustrated
above, or even construct such a model itself from the
observed behavior, and then present it to the scientist
for inspection and evaluation. Unfortunately, a typ-
ical state-of-the-art machine discovery system is not
capable of doing this kind of job. It might try to find
a single formula relating ¢ and z directly, disregard-
ing their previous values. In addition, instead of being
content with the data given to it and trying to make
as much of it as possible, it might ask us to perform
additional experiments. If more than two variables
were measured, it might ask us to keep the values of
all but two variables constant and vary the remaining
two. This is inconvenient when we are dealing with



dynamic systems, as we might not have experimental
control over all the system variables.

The paper presents LAGRANGE, a system that ex-
tends the scope of machine discovery to dynamic sys-
tems. LAGRANGE is able to find a set of differential
and/or algebraic equations, i.e. laws, governing the be-
havior of a dynamic system, such as the one described
in the above example. The task of identification of
dynamic systems and the LAGRANGE algorithm, de-
signed to address this task, are described in Section 2.
The results of several experiments with LAGRANGE
are given in Section 3. Related work is briefly touched
upon in Section 4. Finally, Section 5 concludes with a
discussion and several directions for further work.

2 The LAGRANGE Algorithm

The task of identification of dynamic systems, ad-
dressed by LAGRANGE, can be defined as follows:
Given an example behavior of a dynamic system, find
a set of laws that describe the dynamics of the system.
More precisely, a set of real-valued system variables is
measured at regular intervals over a period of time, as
illustrated in Table 1. The laws to be discovered (also
called a model of the dynamic system) typically take
the form of a set of differential equations.

Table 1: A Behavior Trace of a Dynamic System.

time X1 X2 . Xn
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The input to LAGRANGE is a behavior trace of a dy-
namic system, such as the one given in Table 1. In
addition, the values of three parameters have to be
specified. These include o, the order of the dynamic
system (i.e. the order of the highest derivative appear-
ing in the dynamics equations), d, the maximum depth
of new terms introduced by combining old terms (vari-
ables), and r, the maximum number of independent
regression variables used for generating equations.

Table 2 gives the LAGRANGE algorithm. Taking
the set of system variables S = {Xi,...,X,}, LA-
GRANGE first introduces their time derivatives (up to
order o). It then introduces new variables (terms) by
repeatedly applying multiplication to variables from S
and their time derivatives. Finally, given the set of all
(old and new) variables, it generates and tests equa-
tions by using linear regression.

Table 2: The LAGRANGE Algorithm.

1. Introduce time derivatives (up to order o)
of the system variables
D:=0
for all variables v in S do
Vo ‘=0
for i :=1to o do
Vi i= i (*v; =0-1 %)
D:=DuU {’U,}
V:=SuUD

2. Introduce new variables with multiplication
VO =V
for/:=1tod—1do
Vi:=10
for all pairs of variables (v,u) € Vo x V;_; do
My =V *U
Vi=Vu {nv,u}
(* duplicate terms removed in this step *)
Vi=vVuy

3. Do linear regression (LR)
on subsets of all variables
M:=0
fori:=1tor+1do
for all subsets R € P(V), |R| =1 do
choose dependent variable y € R
if LR(y, R\ {y}) is significant
then M :=MU{y=cy+ Z czx}

z€R\{y}
(* add linear regression formula to M *)

The time derivatives are introduced by numeri-
cal derivation in step 1. The following formula
[Bohte 1991] (p. 73) is used to calculate time deriva-
tives:
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where z; = X (to + ih) and @; = X(to + ih). If the
measurement error for X is § and h < 1, the error
of the numerical derivative calculated by the above
formula is O(8/h). The error of the i-th derivative of
X calculated in step 1 would then be O(§/h?). Thus,
due care should be exercised and derivatives should
be measured whenever the measurement error is lower
than the calculation error stated above.

Step 2 introduces as new variables all the terms of
depth not greater than d, obtained from the system
variables and their derivatives (variables from Vj).



When introducing new variables, terms of depth [ are
gathered in V;_;. A term [, X;* is of depth [ iff
I = 3", a;. For example, X;X, is of depth 2 and
X3?X2 is of depth 5. As Vp contains (o + 1) - n vari-
ables, V; contains O(((o + 1)n)"*!) variables. Conse-
quently, at the end of step 2, |[V| = O(((o + 1)n)?).
The values of the new variables in all time points are
also calculated in this step.

Equations are generated and tested in step 3. Roughly
speaking, each subset of V sized at most r + 1 is used
to generate a linear equation, where one of the terms
is expressed as a linear combination of the remaining
ones. The constant coefficients in the linear equation
are determined by applying linear regression to fit the
corresponding values [Volk 1958] (pp. 260-278). The
multiple correlation coefficient R [Volk 1958] (p. 275)
is used to judge the significance of the equation. If
R > 1—tg, where tg is a prespecified threshold (a user
definable parameter in LAGRANGE), the equation is
considered significant and is retained in the model of
the dynamic system. Note that LAGRANGE makes
no explicit distinction between dependent and inde-
pendent variables.

The total number of regressions tried is O(|V|"+1),
that is O(((0 + 1)n)?"+1)). While this number is ex-
ponential in the parameters d and r, we should note
that small values of these parameters were sufficient
for all the experiments we performed (d = 2, r = 3).

To illustrate the work of the algorithm, consider the
biological experiment from the introduction, where
the system variables are S = {c,z}. Assume that
the values for o, d and r are one, two, and three
respectively. The time derivatives D = {¢, &} are
introduced in the first, and the new terms V; =
{c?, ez, cé, ci, x%, xé, x®,¢%, ¢x, 4%} in the second step.
The third step considers all subsets of V= SUDUV; of
cardinality one, two, three, and four during equation
generation. These include the subsets {¢}, {¢, z,%}
and {c&,z, &, cx}, the latter two generating the model
equations.

The above description of the LAGRANGE algorithm
is declarative. In practice, steps 2 and 3 are inter-
leaved. First, linear equations are tried on the initial
set of variables, determined in step 1. New terms are
then introduced, layer by layer, and linear regressions
for them are tried. This is repeated until the pre-
specified depth of new terms is reached. In addition,
when a term is expressed as a linear combination of
others, it is removed from the process of introducing
new variables and testing regressions. This reduces
the number of redundant equations generated and im-
proves efficiency.

3 Experimental evaluation

The following procedure was used in the experimen-
tal evaluation of LAGRANGE: A set of differential
equations modeling a real-life dynamic system was first
chosen, as well as appropriate values for the parame-
ters involved. The initial state for the system vari-
ables was next selected. The differential equations
were then integrated for N = 1000 steps of h = 0.01
time units, using the the fourth-order Runge-Kutta
method [Press et al. 1986] (pp. 550-554). The result-
ing behavior (a sequence of a thousand states) was
then given to LAGRANGE, which generated a set of
equations describing the behavior.

Models of several real-life dynamic systems were used
to test LAGRANGE. These include the biological sys-
tem described in the introduction, a cascaded tanks
system [Kraan et al. 1991], a linear chemical reaction,
a predator-prey system, and a nonlinear oscillatory
chemical reaction (the Brusselator), the models for all
three taken from [Babloyantz 1986]. All of these sys-
tems are first-order systems, i.e., the system variables
and their first derivatives suffice for describing the dy-
namics of these systems.

The following parameter settings were used in LA-
GRANGE: For all test cases, the dynamic system or-
der o was set to one, and r was set to three (at most
three terms can appear on the right-hand side of a lin-
ear regression). Note that r = 2 suffices for all systems,
except for the biological one. The maximum depth d of
new terms was set to two and the significance thresh-
old tp was set to 0.00001. The only exception was
made for the Brusselator example, where d was set to
three (the term X?2Y that appears in the Brusselator
equations is of depth three).

LAGRANGE is implemented in the C programming
language. It was run on a Sun SPARC IPC worksta-
tion. For all models, the running times were of the
order of seconds, except for the Brusselator, where the
running time was one minute.

An equation might be re-discovered several times in
similar forms. For example, the equation X +Y = Z
could be re-discovered as X? + XY = XZ. To sim-
plify the implementation, we have removed such obvi-
ous redundancies manually. In future versions of LA-
GRANGE, this could be done automatically or care
might be taken that such redundancies are not gener-
ated at all. More sophisticated redundancies have been
left untouched, as in the chemical kinetics example.



Biological model

The differential equations given in the introduction
were integrated for N = 1000 steps of A = 0.1 time
units. A large integration step was chosen because the
dynamics of this system is relatively slow as compared
to the other systems considered. LAGRANGE gener-
ated the following model from the given behavior:

.- 110
¢ = 6033 5 T
ct = —x—100-2+0.09-cx

This model is equivalent to the one given in the intro-
duction if we take into account the particular values
of the constants appearing there.

Cascaded tanks

A cascaded tanks system [Kraan et al. 1991] consists
of two tanks (A and B), where water flows from the
first into the second. The first tank has a constant
inflow. The whole system can be described by the
following model

’iA =
1{4 = 14 —04 o4 = coV/ly
Il = oa—oB o = c2V/lB

where i, is the inflow into tank A, o4 and op are
the outflows from tanks A and B and [4, [p are the
corresponding water levels. The values ¢; = 200 and
¢y = 13 were chosen for the constants and the behavior
of the system was simulated from the initial state [ 49 =
10000,1lg¢ = 0.

The following set of equations, equivalent to the above
model, was generated by LAGRANGE:

if“ = 200
l:4 = 200 —o04 169-14 = o042
lB = 04 — OB 169-[3 = 032

Taking into account that i4 = ¢; = 200, the equations
foria,l4 and [p are identical to the ones in the original
model. The remaining two equations can be obtained
by squaring their counterparts in the original model.

Chemical kinetics

The following is a simple chemical kinetics model of

a two-step chemical reaction, where substance A is

transformed into substance B, which is then trans-

formed into substance C' [Babloyantz 1986] (p. 37).
A4 2 B

ko

B — C

The constants k; and ks are the corresponding reac-
tion rates. The evolution of the concentrations of the
substances involved in the reaction is described by the
following equations:

A = —kA
B = kA—kyB
C = k‘gB

Only substance A was initially present (49 = 100,
By = Cy = 0), and the reaction rates were k; = 2
and k; = 3. An equivalent model was generated by
LAGRANGE:

A = —2.4
B = 2.4-3-B
C = 3-B

(x) C = 100—A-B

The equations for A, B and C are obtained by filling
in the values of the constants k; and k- in the original
model. Equation (x), on the other hand, is not found
in the original model. It expresses the law of mass
conservation for the particular case at hand.

Population dynamics

A Volterra-Lotka model of periodic behavior can be
used to model the coexistence of prey and predator
populations [Babloyantz 1986] (p. 145). For example,
take the populations of lynxes and hares. The latter is
a vegetarian, the former a carnivore that hunts hares.
The lynx population must behave in such a manner
that it must not eat all the hares, or its own species will
disappear. The dynamics of this system is described
by the following model

N, =
Ny, =

klNl — SN1N2
SN1N2 - ngz

where N; and N> represent the hare and lynx popula-
tions, respectively. We chose the initial hare and lynx
populations to be Nig = 10 and Nyy = 140, and the
parameters s = 0.01, k; = 1.6, k2 = 0.2. The following
two equations were generated by LAGRANGE:

160 - Ny — 100 - Ny
20 - Ny + 100 - N,

NiNy, =
NiNy, =

They can be obtained by substituting the values of the
parameters in the original equations, then multiplying
by 100 = 1/s and expressing N1 N2 from the resulting
equations.
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Figure 2: Behavior of the Brusselator.

The Brusselator

The Brusselator is an oscillating chemical system
[Babloyantz 1986] (pp. 175-177), in which the con-
centrations of two substances X and Y are trapped in
an oscillatory time change, described by the following
equations and illustrated in Figure 2.

X = A-(B+1)X+X%
Y = BX-X?

Substances A and B also take part in the reaction,
but their concentrations are held constant through ap-
propriate adjustments. The initial conditions were
Xo = Yy = 0, and the parameters were A = 1 and
B = 2. From the behavior trace, LAGRANGE gener-
ated the following model:

X%y = -1+43-X+X
vV = 1-X-X

Expressing the term X2Y from the original equa-
tion for X yields the first equation generated by LA-
GRANGE. The second equation generated by LA-
GRANGE is obtained by adding the original equations
and then expressing V" in terms of X and X.

4 Related work

To relate our work to other work in the field of ma-
chine discovery and machine learning, let us briefly
discuss the history of LAGRANGE. Although ma-
chine discovery has not paid much attention to dy-
namic systems (except for the recent recognition of
the need for techniques that can handle such sys-
tems [Bielecki 1992]), there is a significant body

of work devoted to learning qualitative models of
dynamic systems [Coiera 1989], [Bratko et al. 1991],
[Kraan et al. 1991], [Dzeroski and Bratko 1992].
Some of this work relies on inductive logic program-
ming [Lavra¢ and Dzeroski 1993] systems to induce
the models from example behaviors and background
knowledge consisting of the definitions of the QSIM
[Kuipers 1986] constraints.

The LINUS approach to inductive logic programming
[Lavrat et al. 1991] is based on the idea of transform-
ing an inductive logic programming problem to propo-
sitional form and then applying propositional learning
systems. This is accomplished by using background
knowledge predicates to introduce new variables and
generate propositional features [Dzeroski et al. 1992].
Our original idea for LAGRANGE was to use a sim-
ilar approach in order to discover system dynamics:
introduce new variables as the time derivatives of ex-
isting ones and then apply existing machine discovery
systems. However, the latter did not meet our basic re-
quirements for a machine discovery system to be used
for discovering differential equations, which were:

e It must be able to find laws involving more than
one variable from observational data only, i.e.
without asking for additional experiments.

e It must be able to find a set of laws, rather than
a single one, where all laws hold for the domain
as a whole. It is not explicitly stated beforehand
which system variables are dependent and which
are independent.

Systems like BACON [Langley et al. 1987] and
FAHRENHEIT [Zytkow and Zhu 1991] typically ask
the scientist to perform experiments. While ABA-
CUS [Falkenheiner and Michalski 1990] and FAHR-
ENHEIT are able to discover more than one law in a
domain, these laws usually hold in disjoint subspaces
of the domain. There have been some ideas about dis-
covering a set of simple laws from observational data
with BACON, but they have not actually been incor-
porated into BACON. Thus, none of the above system
meets both of the above criteria in a satisfactory way.

The Equation Finder [Zembowitz and Zytkow 1992],
used as a module in FAHRENHEIT, comes closest
to meeting the above requirements. Given a set of
real-valued pairs (z;,y;), it tries to find a formula
Y = f(X), without asking for additional data. The
main problem with Equation Finder is that it is look-
ing for a function of one variable only. In dynamic
systems, however, the value of a variable at time #;41
can depend on the values of several variables at time



t;- This makes the ability to deal with functions of
more than one variable a necessity.

One of the important features of Equation Finder
is the ability to handle errors in the input data.
Such a feature is necessary for handling real-life
data. It is also important that the convergence
of Equation Finder and its sensitivity to errors
in the input data have been thoroughly analysed
[Zembowitz and Zytkow 1992].

IDS [Nordhausen and Langley 1990] touches upon the
problem of discovering dynamics. The qualitative
schemata generated by IDS can be considered qualita-
tive states of a system. The transitions between states
(schemata) capture in a way the qualitative change of
the system over time, i.e., its global dynamics. They
are more of the phase transition type, rather than
continuous state changes as described by differential
equations. However, numeric laws within the qualita-
tive states could, in principle, include time-dependent
variables.

5 Discussion

The most important contribution of our work is the
extension of the scope of machine discovery to dy-
namic systems. LAGRANGE is able to construct a
set of differential and/or algebraic equations describ-
ing a given behavior of a dynamic system. In this
way, it extends the scope of machine discovery systems
from high-school physics (F' = ma) to college physics
(F = m).

It is also important that LAGRANGE is able to gen-
erate a set of laws involving more than two variables
from observational data only. This is in contrast with
most machine discovery systems, which perform prob-
lem decomposition to find laws involving more than
two variables. In practice, these systems keep some
variables constant and ask the user (scientist) to vary
the others. This may prove impossible in many cases,
especially in the context of dynamic systems, as the
scientist might not have full experimental control over
all the system variables involved.

Our work is very much in the BACON tradition, show-
ing that one can handle a large number of appar-
ently complex laws with very simple discovery mech-
anisms. This is demonstrated by the successful use
of LAGRANGE for generating models of several dy-
namic systems, including a biological system, a cas-
caded tanks system, two chemical reactions and a
predator-prey population system. For these systems,
LAGRANGE generates models correctly describing
the given behaviors. Judging on the successful use of

LAGRANGE in building models of dynamic systems,
we conclude that LAGRANGE is a promising step to-
wards the application of machine discovery to complex
dynamic systems.

LAGRANGE can be improved in many ways, includ-
ing handling of errors in the input data, taking into
account multiple behavior traces, removing redundant
laws in an intelligent way, introducing new terms by
other transformations in addition to multiplication,
and improving the search control.

The highest priority is the handling of measurement er-
rors and noise in the input data, which is necessary for
practical applications. At present, LAGRANGE does
not take into account any errors in the input data, ex-
cept through the tg tolerance parameter (Section 2).
Namely, if the data is less accurate, we may set tg to
a lower value and consider equations that are appar-
ently less significant. However, a careful analysis of the
sensitivity of LAGRANGE to changes in this param-
eter is needed. For applying LAGRANGE to real-life
data, measurement errors should be taken into account
more explicitly. The approach in Equation Finder
[Zembowitz and Zytkow 1992] could be adapted for
this purpose.

Although at present new terms are introduced by mul-
tiplication only, other transformations, such as those
used in Equation Finder could be easily incorporated.
The number of new terms would significantly increase
in this case and would require reduction of the search
complexity. Heuristics should thus be used to reduce
the number of new terms introduced. In addition, the
terms for linear regressions should be chosen in a more
intelligent way.
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