Bayesian Logic Programs

Summer School on Relational Data Mining
17 and 18 August 2002, Helsinki, Finland

Kristian Kersting, Luc De Raedt
Albert-Ludwigs University

Freiburg, Germany
Real-world applications

uncertainty

probability theory
discrete, continuous

Bayesian networks

complex, structured domains

logic
objects, relations, functors

Logic Programming (Prolog)

Bayesian logic programs
Outline

• Bayesian Logic Programs
 • Examples and Language
 • Semantics and Support Networks
• Learning Bayesian Logic Programs
 • Data Cases
 • Parameter Estimation
 • Structural Learning
Bayesian Logic Programs

• Probabilistic models structured using logic
• Extend Bayesian networks with notions of objects and relations
• Probability density over (countably) infinitely many random variables
• Flexible discrete-time stochastic processes
• Generalize pure Prolog, Bayesian networks, dynamic Bayesian networks, dynamic Bayesian multinets, hidden Markov models,...
Bayesian Networks

• One of the successes of AI
• State-of-the-art to model uncertainty, in particular the degree of belief
• Advantage [Russell, Norvig 96]: "strict separation of qualitative and quantitative aspects of the world"
• Disadvantage [Breese, Ngo, Haddawy, Koller, ...]: Propositional character, no notion of objects and relations among them
Stud farm (Jensen ´96)

- The colt John has been born recently on a stud farm.
- John suffers from a life threatening hereditary carried by a recessive gene. The disease is so serious that John is displaced instantly, and the stud farm wants the gene out of production, his parents are taken out of breeding.
- What are the probabilities for the remaining horses to be carriers of the unwanted gene?
Bayesian networks [Pearl ´88]

Based on the stud farm example [Jensen ´96]
Bayesian networks [Pearl ´88]

Based on the stud farm example [Jensen ´96]

(Conditional) Probability distribution

<table>
<thead>
<tr>
<th>P(bt_john)</th>
<th>bt_henry</th>
<th>bt_irene</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1.0,0.0,0.0)</td>
<td>aa</td>
<td>aa</td>
</tr>
<tr>
<td>(0.5,0.5,0.0)</td>
<td>aa</td>
<td>aA</td>
</tr>
<tr>
<td>(0.0,1.0,0.0)</td>
<td>aa</td>
<td>AA</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.33,0.33,0.33)</td>
<td>AA</td>
<td>AA</td>
</tr>
</tbody>
</table>

P(bt_cecily=aA|bt_john=aA)=0.1499
P(bt_john=AA|bt_ann=aA)=0.6906
P(bt_john=AA)=0.9909
Bayesian networks (contd.)

- acyclic graphs
- probability distribution over a finite set \(X_1, \ldots, X_n \) of random variables:

\[
P(X_1, \ldots, X_n) = P(X_1 | X_2, \ldots, X_n) \cdot P(X_2 | X_3, \ldots, X_n) \cdot \ldots \cdot P(X_n)
\]

\[
= P(X_1 | Pa(X_1)) \cdot P(X_2 | Pa(X_2)) \cdot \ldots \cdot P(X_n | Pa(X_n))
\]

\[
= \prod_{i=1}^{n} P(X_i | Pa(X_i))
\]
From Bayesian Networks to Bayesian Logic Programs

\[\text{Pa}(bt_fred) \]

\[\begin{align*}
&\text{bt_fred} | \text{bt_unknown1, bt_ann.} \\
&\text{bt_dorothy} | \text{bt_ann, bt_brian.} \\
&\text{bt_eric} | \text{bt_brian, bt_cecily.} \\
&\text{bt_gwenn} | \text{bt_ann, bt_unknown2.} \\
&\text{bt_henry} | \text{bt_fred, bt_dorothy.} \\
&\text{bt_irene} | \text{bt_eric, bt_gwenn.} \\
&\text{bt_john} \\
\end{align*} \]
From Bayesian Networks to Bayesian Logic Programs

\[P\left(bt_fred \right) \]

\[bt_fred \mid bt_unknown1, bt_ann. \]
\[bt_dorothy \mid bt_ann, bt_brian. \]
\[bt_eric \mid bt_brian, bt_cecily. \]
\[bt_gwenn \mid bt_ann, bt_unknown2. \]

\[bt_henry \mid bt_fred, bt_dorothy. \]
\[bt_irene \mid bt_eric, bt_gwenn. \]

\[bt_john \mid bt_henry, bt_irene. \]

<table>
<thead>
<tr>
<th>(P(bt_john))</th>
<th>bt_henry</th>
<th>bt_irene</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,0,0,0,0)</td>
<td>aa</td>
<td>aa</td>
</tr>
<tr>
<td>(0.5,0,5,0,0)</td>
<td>aa</td>
<td>aA</td>
</tr>
<tr>
<td>(0,0,1,0,0)</td>
<td>aa</td>
<td>AA</td>
</tr>
<tr>
<td>(0,0,0,1,0)</td>
<td>aA</td>
<td>aa</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.33,0.33,0.33)</td>
<td>AA</td>
<td>AA</td>
</tr>
</tbody>
</table>
From Bayesian Networks to Bayesian Logic Programs

% apriori nodes
bt_ann. bt_brian.
bt_cecily. bt_unknown1. bt_unknown1.

% aposteriori nodes
bt_henry | bt_fred, bt_dorothy.
bt_irene | bt_eric, bt_gwenn.
bt_fred | bt_unknown1, bt_ann.
bt_dorothy| bt_brian, bt_ann.
bt_eric | bt_brian, bt_cecily.
bt_gwenn | bt_unknown2, bt_ann.
bt_john | bt_henry, bt_irene.

Domain
e.g. finite, discrete, continuous

(conditional) probability distribution

<table>
<thead>
<tr>
<th>P(bt_john)</th>
<th>bt_henry</th>
<th>bt_irene</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1.0,0.0,0.0)</td>
<td>aa</td>
<td>aa</td>
</tr>
<tr>
<td>(0.5,0.5,0.0)</td>
<td>aa</td>
<td>aA</td>
</tr>
<tr>
<td>(0.0,1.0,0.0)</td>
<td>aa</td>
<td>AA</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.33,0.33,0.33)</td>
<td>AA</td>
<td>AA</td>
</tr>
</tbody>
</table>
From Bayesian Networks to Bayesian Logic Programs

% apriori nodes

\[\text{bt(ann)}, \text{ bt(brian)}, \text{ bt(cecily)}, \text{ bt(unknown1)}, \text{ bt(unknown1)}. \]

% aposteriori nodes

\[\begin{align*}
\text{bt(henry)} & | \text{ bt(fred), bt(dorothy)}. \\
\text{bt(irene)} & | \text{ bt(eric), bt(gwenn)}. \\
\text{bt(fred)} & | \text{ bt(unknown1), bt(ann)}. \\
\text{bt(dorothy)} & | \text{ bt(brian), bt(ann)}. \\
\text{bt(eric)} & | \text{ bt(brian), bt(cecily)}. \\
\text{bt(gwenn)} & | \text{ bt(unknown2), bt(ann)}. \\
\text{bt(john)} & | \text{ bt(henry), bt(irene)}. \\
\end{align*} \]

<table>
<thead>
<tr>
<th>(P(\text{bt(john)}))</th>
<th>(\text{bt(henry)})</th>
<th>(\text{bt(irene)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1,0,0,0,0,0))</td>
<td>aa</td>
<td>aa</td>
</tr>
<tr>
<td>((0,5,0,0,5,0))</td>
<td>aa</td>
<td>aA</td>
</tr>
<tr>
<td>((0,0,1,0,0,0))</td>
<td>aa</td>
<td>AA</td>
</tr>
<tr>
<td>((0,0,1,0,0,0))</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>((0,33,0,33,0,33))</td>
<td>AA</td>
<td>AA</td>
</tr>
</tbody>
</table>

(conditional) probability distribution
From Bayesian Networks to Bayesian Logic Programs

% ground facts / apriori

father(unkown1,fred). mother(ann,fred).
father(brian,dorothy). mother(ann, dorothy).
father(brian,eric). mother(cecily,eric).
father(unkown2,gwenn). mother(ann,gwenn).
father(fred,henry). mother(cecily,gwenn).
father(eric,irene). mother(gwenn,irene).
father(henry,john). mother(irene,john).

% rules / aposteriori

bt(X) | father(F,X), bt(F), mother(M,X), bt(M).

(conditional) probability distribution

<table>
<thead>
<tr>
<th>P(bt(X))</th>
<th>father(F,X)</th>
<th>bt(F)</th>
<th>mother(M,X)</th>
<th>bt(M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1.0,0,0,0.0)</td>
<td>true</td>
<td>Aa</td>
<td>true</td>
<td>aa</td>
</tr>
</tbody>
</table>

...
Dependency graph
= Bayesian network

- bt(ann)
- bt(brian)
- bt(cecily)
- bt(dorothy)
- bt(eric)
- bt(unknown2)
- bt(unknown1)
- bt(fred)
- bt(henry)
- bt(john)
- bt(gwenn)

Relationships:
- mother(ann,dorothy)
- father(brian,dorothy)
- father(brian,eric)
- mother(cecily,eric)
- mother(ann,gwenn)
- mother(dorothy,henry)
- mother(eric,irene)
- mother(irene,john)
- father(unknown1,fred)
- mother(ann,fred)
- father(fred,henry)
- father(eric,irene)
- father(henry,john)
- mother(gwenn,irene)
Dependency graph = Bayesian network
Bayesian Logic Programs
- a first definition

A BLP B consists of

- a finite set of Bayesian clauses.
- To each clause c in B a conditional probability distribution $\text{cpd}(c)$ is associated:

\[
\text{cpd}(c) = P(\text{head}(c)|\text{body}(c))
\]

- Proper random variables $\sim LH(B)$
- graphical structure \sim dependency graph
- Quantitative information \sim CPDs
Bayesian Logic Programs - Examples

MC

% apriori nodes
nat(0).

% aposteriori nodes
nat(s(X)) | nat(X).

HMM

% apriori nodes
state(0).

% aposteriori nodes
state(s(Time)) | state(Time).
output(Time) | state(Time)

DBN

% apriori nodes
n1(0).

% aposteriori nodes
n1(s(TimeSlice)) | n2(TimeSlice).
n2(TimeSlice) | n1(TimeSlice).
n3(TimeSlice) | n1(TimeSlice), n2(TimeSlice).
Associated CPDs

- represent generically the CPD for each ground instance of the corresponding Bayesian clause.

<table>
<thead>
<tr>
<th>P(bt(X))</th>
<th>father(F,X)</th>
<th>bt(F)</th>
<th>mother(M,X)</th>
<th>bt(M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1.0,0.0,0.0)</td>
<td>true</td>
<td>Aa</td>
<td>true</td>
<td>aa</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(0.33,0.33,0.33)</td>
<td>false</td>
<td>AA</td>
<td>false</td>
<td>AA</td>
</tr>
</tbody>
</table>

Multiple ground instances of clauses having the same head atom?
Combining Rules

Multiple ground instances of clauses having the same head atom?

% ground facts as before
% rules
 bt(X) | father(F,X), bt(F).
 bt(X) | mother(M,X), bt(M).

cpd(bt(john)|father(henry,john), bt(henry)) and
cpd(bt(john)|mother(henry,john), bt(irene))

But we need!!

cpd(bt(john)|father(henry,john), bt(henry), mother(irene,john), bt(irene))
Combining Rules (contd.)

- Any algorithm which
 - combines a set of PDFs
 \[
 \left\{ \text{cpd}\left(A \mid A_{i_1}, \ldots, A_{i_n} \right) \mid 1 \leq i \leq m \right\}
 \]
 - into the (combined) PDFs
 \[
 \text{cpd}\left(A \mid B_1, \ldots, B_k \right)
 \]
 - has an empty output if and only if the input is empty
 - E.g. noisy-or, regression, ...

- \(P(A \mid B) \) and \(P(A \mid C) \)
- CR
- \(P(A \mid B, C) \)
Bayesian Logic Programs - a definition

A BLP B consists of

- a finite set of Bayesian clauses.
- To each clause c in B a conditional probability distribution $\text{cpd}(c)$ is associated:
 \[
 \text{cpd}(c) = P\left(\text{head}(c) | \text{body}(c)\right)
 \]
- To each Bayesian predicate p a combining rule $\text{cr}(p)$ is associated to combine CPDs of multiple ground instances of clauses having the same head
- Proper random variables $\sim \text{LH}(B)$
- Graphical structure \sim dependency graph
- Quantitative information \sim CPDs and CRs
Outline

• Bayesian Logic Programs
 • Examples and Language
 • Semantics and Support Networks
• Learning Bayesian Logic Programs
 • Data Cases
 • Parameter Estimation
 • Structural Learning
Discrete-Time Stochastic Process

• Family \(\{ X_t, t \in J \} \) of random variables \(X_t \)
 over a domain \(X \), where \(J \subseteq \{0, 1, 2, \ldots \} \)

• for each linearization of the partial order
 induced by the dependency graph a Bayesian
 logic program specifies a discrete-time
 stochastic process
Theorem of Kolmogorov

Existence and uniqueness of probability measure

• \(X \) : a Polish space
• \(H(J) \) : set of all non-empty, finite subsets of \(J \)
• \(P_I \) : the probability measure over \(X^I, I \in H(J) \)

• If the projective family \(\left(P_I \right)_{I \in H(J)} \) exists then there exists a unique probability measure
Consistency Conditions

- Probability measure \(P_i, I \in H(J) \) is represented by a finite Bayesian network which is a subnetwork of the dependency graph over \(LH(B) \): Support Network

- (Elimination Order): All stochastic processes represented by a Bayesian logic program \(B \) specify the same probability measure over \(LH(B) \).
Support network

• Support network \(N(x) \) of \(x \in LH(B) \) is the induced subnetwork of

\[
S = \{x\} \cup \{y \in LH(B) \mid y \text{ is influencing } x\}
\]

• Support network \(N(x) \) of \(x \subset LH(B) \) is defined as

\[
N(x) = \bigcup_{x \subseteq x} N(x)
\]

• Computation utilizes And/Or trees
Queries using And/Or trees

- A probabilistic query
 \[?- \forall_{1, \ldots, n} Q_1 \ldots Q_n \mid E_1 = e_1, \ldots, E_m = e_m. \]
 asks for the distribution
 \[P(Q_1, \ldots, Q_n \mid E_1 = e_1, \ldots, E_m = e_m). \]

- Or node is proven if at least one of its successors is provable.
- And node is proven if all of its successors are provable.

 \[?- \text{bt(eric)}. \]
Consistency Condition (contd.)

Projective family \(\left(P_I \right)_{I \in H(J)} \) exists if

- the dependency graph is acyclic, and
- every random variable is influenced by a finite set of random variables only

well-defined Bayesian logic program
Relational Character

% ground facts
bt(ann). bt(brian).
bt(cecily). bt(unknown1).
father(unknown1,fred). mother(ann,fred).
father(brian,dorothy). mother(ann, dorothy).
father(brian,eric). mother(cecily,eric).
father(unknown2,gwenn). mother(ann,gwenn).
father(fred,henry). mother(dorothy,henry).
father(eric,irene). mother(gwenn,irene).
father(henry,john). mother(irene,john).

% rules
bt(X) | father(F,X), bt(F), mother(M,X), bt(M).

% ground facts
bt(petra). bt(bsilvester).
bt(anne). bt(wilhelm).
bt(beate).
father(silvester,claudien). mother(beate,claudien).
father(wilhelm,marta). mother(anne, marthe).
...

% ground facts
bt(susanne). bt(ralf).
bt(peter). bt(uta).
father(ralf,luca). mother(susanne,luca).
...

% ground facts
bt(petra). bt(bsilvester).
bt(anne). bt(wilhelm).
bt(beate).
father(silvester,claudien). mother(beate,claudien).
father(wilhelm,marta). mother(anne, marthe).
...

% rules
bt(X) | father(F,X), bt(F), mother(M,X), bt(M).

P(bt(X)) father(X,F) bt(F) mother(X,M) bt(M)
(1.0,0.0,0.0) true Aa true aa
...
(0.33,0.33,0.33) false AA false AA
Bayesian Logic Programs

- Summary

• First order logic extension of Bayesian networks
• constants, relations, functors
• discrete and continuous random variables
• ground atoms = random variables
• CPDs associated to clauses
• Dependency graph = (possibly) infinite Bayesian network
• Generalize dynamic Bayesian networks and definite clause logic (range-restricted)
Applications

- Probabilistic, logical
 - Description and prediction
 - Regression
 - Classification
 - Clustering
- Computational Biology
 - APrIL IST-2001-33053
- Web Mining
- Query approximation
- Planning, ...
Other frameworks

- Probabilistic Horn Abduction [Poole 93]
- Distributional Semantics (PRISM) [Sato 95]
- Stochastic Logic Programs [Muggleton 96; Cussens 99]
- Relational Bayesian Nets [Jaeger 97]
- Probabilistic Logic Programs [Ngo, Haddawy 97]
- Object-Oriented Bayesian Nets [Koller, Pfeffer 97]
 Probabilistic Frame-Based Systems [Koller, Pfeffer 98]
 Probabilistic Relational Models [Koller 99]
Outline

• Bayesian Logic Programs
 • Examples and Language
 • Semantics and Support Networks
 • Learning Bayesian Logic Programs
 • Data Cases
 • Parameter Estimation
 • Structural Learning
Learning Bayesian Logic Programs

Data + Background Knowledge → learning algorithm → $A \mid E, B.$

<table>
<thead>
<tr>
<th>E B</th>
<th>P(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>e b</td>
<td>.9 .1</td>
</tr>
<tr>
<td>e b</td>
<td>.7 .3</td>
</tr>
<tr>
<td>e b</td>
<td>.8 .2</td>
</tr>
<tr>
<td>e b</td>
<td>.99 .01</td>
</tr>
</tbody>
</table>
Why Learning Bayesian Logic Programs?

Learning within Bayesian network

Inductive Logic Programming

Learning within Bayesian Logic Programs

Of interest to different communities?

• scoring functions, pruning techniques, theoretical insights, ...
What is the data about?

\[
\begin{align*}
&\begin{cases}
m(\text{ann, dorothy}) = \text{true}, f(\text{brian, dorothy}) = \text{true}, \\
p(\text{brian}) = b, bt(\text{ann}) = a, bt(\text{brian}) = ?, bt(\text{dorothy}) = a
\end{cases} \\
&\begin{cases}
m(\text{cecily, fred}) = \text{true}, f(\text{henry, fred}) = \text{true}, bt(\text{cecily}) = ab, \\
bt(\text{henry}) = b, bt(\text{fred}) = ?, m(\text{kim, bob}) = \text{true}, f(\text{fred, bob}) = \text{true}, \\
bt(\text{kim}) = ?, bt(\text{bob}) = b
\end{cases}
\end{align*}
\]

A data case \(D_i \in D\) is a partially observed joint state of a finite, nonempty subset \(x \subset LH(B)\).
Learning Task

Given:
- set $D = \{D_1, \ldots, D_n\}$ of data cases
- a Bayesian logic program B

Goal: for each $c \in B$ the parameters

$$\lambda(c) = \{\lambda(c)_1, \ldots, \lambda(c)_{e(c)}\}$$

of $\text{cpd}(c)$ that best fit the given data
Parameter Estimation (contd.)

- „best fit“ ~ ML-Estimation

\[?^* = \arg \max_{? \in H} P_B(?) (D) \]

where the hypothesis space \(H \) is spanned by the product space over the possible values of

\[? := \bigcup_{c \in B} ? (c) \]
Parameter Estimation (contd.)

\[?^* = \arg \max_{? \in H} P_{B(?)} (D) \]

\[= \arg \max_{? \in H} \ln P_{B(?)} (D) \]

Assumption:

D1,...,DN are independently sampled from indentical distributions (e.g. totally separated families),

\[= \arg \max_{? \in H} \ln \prod_i P_{B(?)} (D_i) \]

\[= \arg \max_{? \in H} \sum_i \ln P_{B(?)} (D_i) \]
Parameter Estimation (contd.)

\[\hat{\theta}^* = \arg \max_{\theta \in \Theta} \sum_i \ln P_{B(\theta)}(D_i) \]

\[\arg \max_{\theta \in \Theta} \sum_i \ln P_{N(\vartheta)}(D_i) \]

\[\arg \max_{\theta \in \Theta} \sum_i \ln P_{\mathbb{N}(\vartheta)}(D_i) \]

\[\hat{N}(\vartheta) = \bigcup_i N_{\vartheta}(\text{var}(D_i)) \]

\(\text{N}(\vartheta) \) is an ordinary BN
Parameter Estimation (contd.)

- Reduced to a problem within Bayesian networks:
 given structure,
 partially observed random variables

- EM
 [Dempster, Laird, Rubin, ´77], [Lauritzen, ´91]

- Gradient Ascent
 [Binder, Koller, Russel, Kanazawa, ´97], [Jensen, ´99]
Decomposable CRs

- Parameters of the clauses and not of the support network.

Single ground instance
of a Bayesian clause

Multiple ground instance
of the same Bayesian clause

CPD for Combining Rule
Gradient Ascent

Goal: Computation of

\[\frac{\partial \ln P_N(?) (D)}{\partial \lambda_i} \]

\[\ln P_N(?) (D) \]
Gradient Ascent

\[
\frac{\partial \ln P_{N(?)}(D)}{\partial \text{cpd}(c)_{jk}} = \sum_{\text{subst.}\theta} \sum_{j',k'} \frac{\partial \ln P_{N(?)}(D)}{\partial \text{cpd}(c\theta)_{j'k'}} \times \frac{\partial \text{cpd}(c\theta)_{j'k'}}{\partial \text{cpd}(c)_{jk}}
\]

\[
= \sum_{\text{subst.}\theta} \frac{\partial \ln P_{N(?)}(D)}{\partial \text{cpd}(c\theta)_{jk}}
\]

\[
= \begin{cases}
1, & \text{if } j = j', k = k' \\
0, & \text{if } j \neq j', k \neq k'
\end{cases}
\]

Bayesian ground clause

Bayesian clause
Gradient Ascent

\[
\frac{\partial \ln P_{N(\theta)}(D)}{\partial \text{cpd}(c)_{jk}} = \sum_{\text{subst. } \theta} \frac{\partial \ln P_{N(\theta)}(D)}{\partial \text{cpd}(c_{\theta})_{jk}}
\]

\[
= \sum_{\text{subst. } \theta} \sum_{i=1}^{n} P_{N(\theta)}(\text{head}(c_{\theta}) = u_j, \text{body}(c_{\theta}) = u_k | D_i) \text{cpd}(c)_{jk}
\]
Algorithm

Table 1. A simplified skeleton of the algorithm for adaptive Bayesian logic programs.

```plaintext
function Basic-ABLP(B, D) returns a modified Bayesian logic program

inputs: B, a Bayesian logic program; associated pdfs are parameterized by λ
D, a finite set of data cases

λ ← INITIAL_PARAMETERS
N ← SUPPORTNETWORK(B, D)
repeat until Δλ ≈ 0
    Δλ ← 0
    set pdfs of N according to λ
    for each D_t ∈ D
        set the evidence in N from D_t
        for each clause c ∈ B
            for each ground instance c_θ s.t. \{head(c_θ)\} ∪ body(c_θ) ⊆ N
                for each single parameter λ(c_θ)_t
                    Δλ(c)_t ← Δλ(c)_t + (∂ log P_N(D_t)/∂ λ(c_θ)_t)
                    Δλ ← PROJECTIONONTOCONSTRAINTSURFACE(Δλ)
                λ ← λ + α · Δλ
            return B
```
1. Initialize parameters

2. **E-Step and M-Step**, i.e. compute **expected counts** for each clause and treat the expected count as counts

$$\text{cpd}(c)_{jk} \leftarrow \frac{\sum_{\text{subst. } \theta} \sum_{i=1}^{n} P_{N(?)}(\text{head}(c\theta) = u_j, \text{body}(c\theta) = u_k | D_i)}{\sum_{\text{subst. } \theta} \sum_{i=1}^{n} P_{N(?)}(\text{body}(c\theta) = u_k | D_i)}$$

3. If not converged, iterate to 2
Experimental Evidence

• [Koller, Pfeffer ´97]
 support network is a good approximation

• [Binder et al. ´97]
 equality constraints speed up learning

| m(M,X) | f(F,X) | pdf (c)(h(X)|h(M),h(F)) |
|--------|--------|-------------------------|
| true | true | N(0.5*h(M)+0.5*h(F),s) |
| true | false | N(165,s) |
| false | true | N(165,s) |
| false | false | N(165,s) |

• 100 data cases
• constant step-size
• Estimation of means
 • 13 iterations
• Estimation of the weights
 • sum = 1.0
Outline

• Bayesian Logic Programs
 • Examples and Language
 • Semantics and Support Networks
• Learning Bayesian Logic Programs
 • Data Cases
 • Parameter Estimation
• Structural Learning
Structural Learning

- Combination of Inductive Logic Programming and Bayesian network learning
- Datalog fragment of Bayesian logic programs (no functors)
- Intensional Bayesian clauses
<table>
<thead>
<tr>
<th>Idea - CLAUDIEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>learning from interpretations</td>
</tr>
<tr>
<td>• all data cases are Herbrand interpretations</td>
</tr>
<tr>
<td>• a hypothesis should reflect what is in the data</td>
</tr>
</tbody>
</table>

What is the data about?

\[
\begin{cases}
 m(ann, dorothy) = \text{true}, f(brian, dorothy) = \text{true}, \\
 pc(brian) = b, bt(ann) = a, bt(brian) = ?, bt(dorothy) = a \\
 \vdots
\end{cases}
\]

\[
\begin{cases}
 m(cecily, fred) = \text{true}, f(henry, fred) = \text{true}, \\
 bt(cecily) = ab, bt(henry) = b, bt(fred) = ?, \\
 m(kim, bob) = \text{true}, f(fred, bob) = \text{true}, \\
 bt(kim) = ?, bt(bob) = b
\end{cases}
\]
Claudien -
Learning From Interpretations

- D : set of data cases
- C : set of all clauses that can be part of hypotheses

$H \subseteq C$ (logically) valid iff $\forall D_i \in D : H$ is logically true in D_i

$H \subseteq C$ logical solution iff H is a logically maximally general valid hypothesis

$H \subseteq C$ probabilistic solution iff H is (logically) valid and the Bayesian network induced by B on D is acyclic
Learning Task

Given:

• set \(D = \{D_1, \ldots, D_n\} \) of data cases
• a set \(H \) of Bayesian logic programs
• a scoring function \(\text{score}_D : H \to \mathbb{R} \)

Goal: probabilistic solution \(H^* \in H \)

• matches the data best according to \(\text{score}_D \)
Algorithm

Let H be an initial (valid) hypothesis;
$S(H) := \text{score}_D(H)$;
repeat
 $H' := H$;
 $S(H') := S(H)$;
 foreach $H'' \in \rho_{g}(H') \cup \rho_{s}(H')$ do
 if H'' is (logically) valid on D then
 if the Bayesian networks induced by H'' on the data are acyclic
 then
 if $\text{score}_D(H'') > S(H)$ then
 $H := H''$;
 $S(H) := S(H'')$;
 end
 end
 end
 until $S(H') = S(H)$;
Return H;

Algorithm 1: A greedy algorithm for searching the structure of Bayesian logic programs.
Example

Original Bayesian logic program

```
mc(X) | m(M, X), mc(M), pc(M).
p(X) | f(F, X), mc(F), pc(F).
bt(X) | mc(X), pc(X).
```

Data cases

```
{m(ann, john)=true, pc(ann)=a, mc(ann)=?,
f(eric, john)=true, pc(eric)=b, mc(eric)=a,
mc(john)=ab, pc(john)=a, bt(john) = ? }
```

...
Original Bayesian logic program

\[
\begin{align*}
mc(X) & \mid m(M,X), mc(M), pc(M). \\
\text{pc}(X) & \mid f(F,X), mc(F), pc(F). \\
\text{bt}(X) & \mid mc(X), pc(X).
\end{align*}
\]

Initial hypothesis

\[
\begin{align*}
mc(X) & \mid m(M,X). \\
\text{pc}(X) & \mid f(F,X). \\
\text{bt}(X) & \mid mc(X).
\end{align*}
\]
Example

Original Bayesian logic program

\[
\begin{align*}
mc(X) & \mid m(M, X), mc(M), pc(M). \\
pc(X) & \mid f(F, X), mc(F), pc(F). \\
b(t)(X) & \mid mc(X), pc(X).
\end{align*}
\]

Initial hypothesis

\[
\begin{align*}
mc(X) & \mid m(M, X). \\
pc(X) & \mid f(F, X). \\
b(t)(X) & \mid mc(X).
\end{align*}
\]
Example

Original Bayesian logic program

\[
\begin{align*}
mc(X) & \mid m(M,X), mc(M), pc(M). \\
pc(X) & \mid f(F,X), mc(F), pc(F). \\
bt(X) & \mid mc(X), pc(X).
\end{align*}
\]

Initial hypothesis

\[
\begin{align*}
mc(X) & \mid m(M,X). \\
pc(X) & \mid f(F,X). \\
bt(X) & \mid mc(X).
\end{align*}
\]

Refinement

\[
\begin{align*}
mc(X) & \mid m(M,X). \\
pc(X) & \mid f(F,X). \\
bt(X) & \mid mc(X), pc(X).
\end{align*}
\]
Example

Original Bayesian logic program

mc(X)	m(M,X), mc(M), pc(M).
pc(X)	f(F,X), mc(F), pc(F).
bt(X)	mc(X), pc(X).

Initial hypothesis

mc(X)	m(M,X).
pc(X)	f(F,X).
bt(X)	mc(X).

Refinement

mc(X)	m(M,X).
pc(X)	f(F,X).
bt(X)	mc(X), pc(X).

Refinement

mc(X)	m(M,X), mc(X).
pc(X)	f(F,X).
bt(X)	mc(X), pc(X).
Example

Original Bayesian logic program

\[
\begin{align*}
 mc(X) & \mid m(M,X), mc(M), pc(M). \\
 pc(X) & \mid f(F,X), mc(F), pc(F). \\
 bt(X) & \mid mc(X), pc(X).
\end{align*}
\]

Initial hypothesis

\[
\begin{align*}
 mc(X) & \mid m(M,X). \\
 pc(X) & \mid f(F,X). \\
 bt(X) & \mid mc(X).
\end{align*}
\]

Refinement

\[
\begin{align*}
 mc(X) & \mid m(M,X). \\
 pc(X) & \mid f(F,X). \\
 bt(X) & \mid mc(X), pc(X).
\end{align*}
\]
Example

Original Bayesian logic program

\[
\begin{align*}
mc(X) & \mid m(M, X), mc(M), pc(M). \\
p(c)(X) & \mid f(F, X), mc(F), pc(F). \\
bt(X) & \mid mc(X), pc(X).
\end{align*}
\]

Initial hypothesis

\[
\begin{align*}
mc(X) & \mid m(M, X). \\
p(c)(X) & \mid f(F, X). \\
b(t)(X) & \mid mc(X).
\end{align*}
\]

Refinement

\[
\begin{align*}
mc(X) & \mid m(M, X). \\
p(c)(X) & \mid f(F, X). \\
b(t)(X) & \mid mc(X), pc(X).
\end{align*}
\]
Properties

- All relevant random variables are known
- First order equivalent of Bayesian network setting
- Hypothesis postulates true regularities in the data
- Logical solutions as initial hypotheses
- Highlights Background Knowledge
Example Experiments

mc(X) | m(M, X), mc(M), pc(M).
pc(X) | f(F, X), mc(F), pc(F).
bt(X) | mc(X), pc(X).

Data: sampling from 2 families, each 1000 samples
Score: LogLikelihood
Goal: learn the definition of bt
Conclusion

• EM-based and Gradient-based method to do ML parameter estimation

• Link between ILP and learning Bayesian networks

• CLAUDIEN setting used to define and to traverse the search space

• Bayesian network scores used to evaluate hypotheses
Thanks!