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ABSTRACT. The paper presents approaches to representation and use of uncertain knowledge in decision 
models of DEX methodology. A short introduction to this methodology is given, followed by a presentation of 
representation methods for uncertain input values and uncertain value functions. The emphasis is on the latter, 
since these were recently developed and adopted. Attention is given also to the representation method of higher 
level uncertainty in value functions, which represents a current response to the practical needs we identified, but 
remains open to further theoretical improvement. 
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1. INTRODUCTION 
Uncertainty is an unavoidable companion of complex decision making problems. Dealing with uncertainty can 
be done in different ways, but it is limited by the representational capabilities of the decision support tools used. 
Enabling representation of uncertainties in such tools is therefore important and beneficial. However, 
uncertainty representational capabilities usually come at a price of higher workload during decision making and 
lower comprehensibility of decision support processes and results. 
As decision analysts in several problems from a fresh field of research (impacts of agriculture with genetically 
modified crops) we encountered many situations when representation of uncertainty in decision models was 
beneficial or even asked for by domain experts. To cope with such demands of the problems and wishes of 
knowledge providers, we extended the DEX decision modeling methodology, which was used in these 
problems, with capabilities for uncertain knowledge representations. 
The basic DEX methodology is briefly presented in section 2. The first extension, described in section 3.2, was 
aimed at enabling the model developer to express uncertain knowledge by providing values in form of 
probabilistic distributions. However, distributions did not solve the issue of marking parts of the model as based 
on knowledge of lower or higher confidence. A new parameter was therefore introduced for this purpose, along 
with approaches of its inference as a second extension that is described in section 3.3. 
The presented approach covers most of the practical demands, but there are some details that have several 
proposed solutions or would need theoretical improvements. Section 4 is devoted to this discussion and ideas for 
further work. 
 
2. DEX METHODOLOGY BASICS 
DEX is a decision modeling methodology that is well established in practice (Bohanec and Rajkovič, 1999; 
Bohanec et al., 2003), but without much attention in previews (Triantaphyllou, 2000; Figueira, 2005; Bouyssou 
et al., 2006) of decision modeling approaches. DEX combines the multi-criteria and rule-based approaches. Its 
main characteristic is its qualitative nature: the input values are expected to be qualitative or discretized and the 
value functions are rule-based, usually represented in tabular form as for example the right one in Fig. 1, which 
transforms the values of input attributes pest control and pest profile into values of an aggregate attribute pest 
state. A function of this kind would be defined for all aggregate attributes (boxed ones in Fig. 1). 



 

 

 

Figure 1. Example of a DEX model. Example is a simplification of a small part of a model of ecological and 
economical impacts of cropping systems that was developed for the project SIGMEA (2004-2006). Value 
function for pest state attribute and part of value function for yield reduction attribute are shown in the picture. 

Models with defined hierarchical structure and value functions are used to evaluate alternatives and analyze 
(what if analysis, sensitivity analysis, etc.) the evaluation. An alternative is a vector of values of the lowest-level 
(input) attributes. If we follow the example depicted in Fig. 1, an alternative would be a vector of values for 
climate, water management, ..., pest profile and pest control. Values of input attributes get aggregated into 
values of higher-level attributes according to their value functions. For example, if pest profile has the value 
high problem and pest control has the value no treatment, then the value of the aggregated attribute pest state is 
high according to the first row in the value function of pest state. Values of all the other input attributes get 
aggregated into values of higher-level attributes in a similar way until we obtain the value for the highest level 
attribute, yield reduction in this example. Usually several alternatives are evaluated and analyzed with a model 
in order to find the most appropriate one, to rank them or simply to get an insight into the decision problem at 
hand. 
Some aspects of value functions uncertainty, like imprecision for example, are covered already by the 
qualitative nature of the values used in the models, some other aspects demand extensions of the methodology 
and are covered in section 3. 
The method DEX is supported by software DEXi (Bohanec, 2008), which is freely available from 
http://kt.ijs.si/MarkoBohanec/dexi.html. DEXi facilitates the development of a tree of attributes, definition of 
decision rules, evaluation and analysis of alternatives, and making reports and graphical presentations. DEXi 
has been used in many real-life decision problems in the areas such as selection and evaluation of computer 
hardware and software, evaluation of companies and business partners, personnel management, project 
evaluation, land-use planning, risk assessment in medicine and health-care. Recently, complex decision models 
and applications using DEXi and prototype software with methodological extensions (Žnidaršič et al., 2006; 
Žnidaršič et al. 2008) have been developed in European projects ECOGEN (2003-2006), SIGMEA (2004-2006) 
and Co-Extra (2006-2009). These projects addressed the impacts of using genetically modified crops in food 
and feed production and supply chains. The developed models included a model for the assessment of impacts 
of cropping systems on soil quality (Bohanec et al., 2007) and a model for economic and ecological assessment 
of cropping systems involving genetically modified maize (Bohanec et al., 2008). 

3. UNCERTAIN KNOWLEDGE REPRESENTATION 
Qualitative hierarchical decision analysis models have various components that the developer or user can be 
uncertain about. To start from the most fundamental, the hierarchic structure itself can be seen as uncertain. A 
common observation from practice is that the model developers see some parts of the hierarchy as obvious and 
unquestionable, but might feel less confident about some others. However, as various hierarchies can serve the 



 

 

purposes of decision analysis equally well and as representation and use of uncertainty in hierarchical structure 
in general holds little practical value, we do not elaborate on this aspect here. Other components that can be 
uncertain are the value functions, represented with groups of if-then rules in case of DEX methodology. The 
approach to representing uncertainty in these value functions is presented in sections 3.2 and 3.3. Finally, there 
are the inputs, which are not a part of the model, but a part of the problem representation. Approach to handling 
uncertain inputs is a part of DEX methodology for a long time and is briefly presented in the following section. 
3.1. Uncertainty of inputs 
The inputs to the basic DEX methodology models are usually crisp qualitative values, but the models can 
operate also with probabilistic or fuzzy distributions. For this mode of operation, there are no adaptations of the 
model needed. The model stays crisp and probabilistic or fuzzy definitions are given only for the values of the 
alternatives. When the inputs are given as probabilistic or fuzzy distributions, the method of aggregation follows 
the appropriate probabilistic or fuzzy calculus. Each value from the input distribution is assessed through crisp 
rules and the corresponding values of higher level attributes become distributions since there are more rules 
active in each tabular function. Outputs of these rules are in the case of probability distributions weighted by 
probability products of input attributes’ values and summed up into the resulting probability distribution that is 
further used as input to value functions on higher levels of the hierarchy. In case of fuzzy distributions, the 
approach is very similar with minimum used instead of a product and maximum instead of summation. 
3.2. Uncertainty of value functions 
Representation of uncertainty in value functions is the most recent major extension of DEX methodology 
towards representation of uncertain knowledge. By allowing uncertain representation of the value functions, we 
enable the model developers to express the softness of the rules, that is: whether the goal of the rule is a single 
crisp value or a distribution of higher or lower variance. The idea of extension is exactly that – extending the 
allowed types of rules to also the rules whose goals are probabilistic or fuzzy distributions. Examples of such 
rules are in Fig. 2 and Fig. 3, where the goal values of target attributes are probabilistic distributions. 
 

 

Figure 2. Example of a value function for pest state with soft rules and confidence parameters. 
 

 

Figure 3. Example of a value function for yield reduction with soft rules and confidence parameters. 

 



 

 

Reasoning in such a model is straightforward, the calculation of the output values at each level follows the 
probability or fuzzy calculus as with inputs (see section 3.1). The final output value is also a probabilistic or 
fuzzy distribution. For example, if the input to the pest state attribute are the values low prob. of pest profile and 
conventional for pest control, the pest state would be evaluated as (low:0.9  medium:0.1  high:0.0) and not only 
low as it would be according to crisp value function shown in Fig. 1. Let us consider that we obtain also 
evaluations (deficient:1.0  optimal:0.0  overfertilized:0.0  excess:0.0) for nutrition state and (very low:0.6  
low:0.4  medium:0.0  high:0.0) for weed state. The value for yield reduction is then calculated according to its 
value function and the values/distributions of its three immediate descendants in the hierarchy. The simplest 
view of this calculation is to consider it as a weighted summation of all the distributions in the table from Fig.3. 
Each distribution is weighted according to the probabilities of the values that define it. Weight is a product of 
these probabilities. For example, the first distribution: (no:0.2  low:0.7  medium:0.1  high:0.0  very high:0.0) has 
a weight of 0.54, since this is a product of probabilities of nutrition state being deficient (1.0), weed state being 
very low (0.6) and pest state being low (0.9), which are exactly the values of immediate descendants that 
correspond to the first distribution – the first row in the table from Fig. 3. In the same way we obtain all the 
other weights and get to a final result. Showing only the non-zero weights, the calculation of resulting 
distribution is: 
 
(no:0.2  low:0.7  medium:0.1  high:0.0  very high:0.0) * 0.54 + 
(no:0.0  low:0.3  medium:0.4  high:0.3  very high:0.0) * 0.06 + 
(no:0.1  low:0.3  medium:0.5  high:0.1  very high:0.0) * 0.36 + 
(no:0.0  low:0.1  medium:0.5  high:0.4  very high:0.0) * 0.04 
 
and the resulting distribution for yield reduction is: 
 
(no:0.144  low:0.508  medium:0.278  high:0.07  very high:0.0). 
 
Enabling the model developer, more specifically the domain expert, to express the softness of rules is very 
useful, as some problems inherently imply some soft rules that would be awkward or imprecise, if expressed in 
another way. Dealing with distributions of values is practical also for some other purposes, like for the use of 
numerical inputs, which are much more naturally converted to distributions than to crisp values. 
However, with positive features of such an approach, there come also some negative. More efforts must 
typically be put into definitions of soft value functions as well as into the analysis of results, since distributions 
are difficult to compare and rank. Easy and clear comparison or ranking of distributions is possible only in 
isolated special cases, in all others we must adopt a suitable procedure of transformation into a numerical value. 
3.3. Higher order uncertainty of value functions 
Introduction of distributions into the rules of value functions is useful. However, we have observed in practice 
that in many situations it did not ease the reluctance of domain experts with expressing uncertain knowledge. 
Using distributions they could express softness when necessary, but still this did not cover the phenomenon of 
uncertainty associated with these (either crisp or soft) assessments.  
The constructor of the model, usually an expert in the problem domain, can be more certain or confident in his 
assessments (rules) in some parts of the model and less confident in others. Being less certain might prevent an 
expert to include any existing knowledge in the model, because of the fear of mistakes or being seen later as 
incompetent. This however hinders the possible uses of incomplete and uncertain knowledge in decision 
models. To enable the users to express which values are given with high certainty and which with a low one, we 
introduced a separated parameter named confidence. The naming follows the naming of Wang (Wang, 2001), 
whose approach inspired us for the use of higher level uncertainty measures in our methodology. 
Such a parameter can be defined for every rule that corresponds to a combination of input values (every row in a 
tabular value function). Confidence parameters are shown in Fig. 2 beside distributions and are marked with a 
capital C. With a value from the interval [0,1] the parameter describes the confidence level of the goal value’s 



 

 

assessment in each rule. Value of 1 represents a completely confident rule (a fact) and the value 0 a complete 
opposite (a guess) with the values in between representing intermediate levels accordingly. When defining the 
values of this parameter, the model developers can be assisted by the suggested interpretation: value of the 
parameter corresponds to the ratio among the number of (possibly hypothetical) observed cases of the given rule 
and the number of cases that are expected to affect the rule’s distribution in the near future. As the parameter 
represents the stability of the initial assessment, but is not of the same kind (like a probability of a probability 
would be), it is not a second order uncertainty, but an undefined higher order uncertainty measure. 
Assigning confidence levels to decision rules has more than one use in decision models. The simplest use case is 
when the model is used as a dissemination and discussion tool. A model with defined confidence parameters 
provides clear information about the confidence (and indirectly completeness) of encoded knowledge and 
provides clues which rules and concepts in the model need to be further studied. A more general use case is in 
situations when the information on levels of confidence in knowledge is used in the phase of analysis. For the 
purpose of analysis, the confidence parameters of aggregate attributes are calculated as products of confidence 
parameters of child attributes (immediate descendants in the hierarchy), the confidence parameter of the given 
rule and the weight of the given rule (the probability of this rule, given the alternative). Let us follow the 
example from section 3.2 to show a concrete calculation. Provided that the values of input attributes are certain 
and have the value C=1.0, the confidence of pest state distribution from the example would be 0.9. The 
confidence parameters of nutrition state and weed state would be calculated through the model, but let us 
assume that they are 0.2 and 0.5. The calculation of confidence for yield reduction is then again a weighted 
summation, but this time over its confidence values in rows from Fig. 3. However, the weights are a bit different 
now. Weight in each row corresponds to the product of probabilities of immediate descendants values (like in 
the inference of values) additionally multiplied by the confidence parameters of the descendants. The 
confidence value for yield reduction in our example would be therefore calculated as: 
0.9 (confidence of first distribution from Fig. 3) * 0.54 (weight of this distribution) * 0.2 (confidence of 
nutrition state value) * 0.5 (confidence of weed state value) * 0.9 (confidence of pest state value) = 0.04374 
 
Resulting aggregate attributes’ parameters that are assessed this way can be used in analysis as a comparative 
(relative) indicator of background knowledge support of each alternative’s assessment. The alternatives that get 
assessed through less certain parts of the model, i.e. that use rules with lower confidence parameters in their 
assessment, will consequently have lower confidence of the final result than the alternatives that get calculated 
through rules with higher confidence. This might not influence the evaluation procedure directly, but, for 
example it can warn the user to check the assessments of relevant alternatives more thoroughly when their 
confidence is comparatively much lower than the confidence of other alternatives. 
 
4. OPEN ISSUES 
There are several aspects of the presented approach that might be improved or would benefit from further work 
and research on human perception of uncertainties in decision problems. The most evident issue is the approach 
of calculation of confidence parameters during assessment of alternatives. Currently, the default is the presented 
weighted product, but the product causes parameters of the attributes on high levels of hierarchy to become very 
small. Although the relative comparison among the alternatives is what is aimed at, the small values cause 
discomfort of the users, as the results of the model seem weakly supported. Instead of a product, we could use 
any of the t-norms (Klement et al., 2004), for example the minimum, the maximum or the Lukasiewicz’s t-norm 
to name only the most known and interesting ones. Even better, an empirical experiment or a series of 
experiments could be conducted to find out which norms are best suited to developers’ and users’ perception of 
the inference of confidence.  
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