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1 INTRODUCTION

In general, the decision making problem can be defined as follows:

Given a set of alternatives A = {A1, A2, . . .} and

(somehow expressed) aims or goals of the decision maker(s),
find alternative Ai ∈ A that best satisfies the goals.

Problems of this kind can be found in almost any field of human activity. They
range from everyday personal decisions to more complex problems like selection
of the most appropriate technology, project management and planning, match-
ing people to jobs and many others. The complexity of such problems usually
originates in
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• complex and often incomplete, uncertain or conflicting knowledge of how
to define and achieve the goals,

• loosely defined alternatives,

• a large number of parameters that influence the decision,

• a large number of alternatives,

• the presence of several decision making groups with different objectives,
and

• time constraints imposed upon the process.

Many methods and computer programs have been developed in order to help
decision makers solve more or less complex problems (Humphreys and Wisudha
1987). They are usually studied within the framework of decision support sys-
tems (Keen and Scott Morton 1978, Alter 1980), operations research and man-
agement sciences, decision theory (French 1986) or decision analysis (Phillips
1986). In a broad sense, expert systems may also be considered systems that
solve and explain complex repetitive decisions (Efstathiou and Mamdani 1986).

The main role of decision methods and tools is to support decision makers in

• organizing and systematizing the facts, data and knowledge that influence
the decision,

• consistently applying these upon all alternatives, and in

• further analysis and optimization of the alternatives.

In this paper we show how multi-attribute decision making methods can be
combined with expert system technology in order to obtain a better quality in
terms of decision knowledge acquisition and explanation, where an expert system
plays the role of a cognitive support tool for decision making. In the next section,
the concept of multi-attribute decision making is presented. Section 3 gives a
formal description of knowledge representation that is used in the proposed
approach. The methods for knowledge acquisition, knowledge explanation and
evaluation of alternatives are presented in sections 4, 5 and 6, respectively. After
a brief description of practical applications of this approach (section 7), methods
for knowledge acquisition and explanation are further discussed in section 8.

2 MULTI-ATTRIBUTE DECISION MAKING

In multi-attribute decision making, the decision problem is decomposed into a
number of smaller, less complex subproblems (Keeney and Raiffa 1976, Chankong
and Haimes 1983, French 1986). Alternatives are decomposed onto different di-
mensions, usually called attributes, criteria, goals, etc. These are evaluated
independently. The total utility of an alternative is finally obtained by some ag-
gregation procedure. Alternatives are ranked according to utility values, where
a higher value means a better alternative.
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In multi-attribute terms, the decision problem is therefore described by:

1. a set of alternatives A = {A1, A2, . . .};

2. a set of criteria X = {X1,X2, . . . ,Xn}; each criterion Xi ∈ X is further
described by its name, xi, and the domain Di of values it may hold;

3. partial utility functions fi : Di → Ri, i = 1, 2, . . . , n;

4. a global utility (aggregation) function F : R1 × R2 × . . . × Rn → R.

In order to evaluate alternatives, each alternative A ∈ A is first described by a
vector of values

v = [v1, . . . , vn] , vi ∈ Di, i = 1, 2, . . . , n.

The partial utility functions are then used to determine the decision maker’s
preference Pi of the alternative according to each particular criterion Xi:

Pi = fi(vi), i = 1, 2, . . . , n.

The preference Pi is usually expressed as a number within a certain interval Ri,
which is often the same for all the criteria, for example [0,1].

Finally, the total utility of the alternative is calculated:

F (A) = F (P1, P2, . . . , Pn).

In practice, the most commonly used formula for F is a weighted sum where
weights wi are given by the decision maker:

F (P1, P2, . . . , Pn) =

n∑

i=1

wiPi.

The above description gives only the main ideas of multi-attribute decision
making which may be treated differently in different methods. For example,
criteria may be further structured into trees. There are also large differences
among the methods in the representation and assessment of alternatives and
utility functions (Humphreys and Wisudha 1987).

However, the most common drawback of existing multi-attribute methods is
in the need of translating the decision makers’ knowledge about a particular
decision problem into (analytical) functions and numbers. The translation itself
may be a problem. Furthermore, such models are poorly suited for

• verification, justification and explanation of the model itself, and

• explanation of the obtained evaluation results.
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Explanation facilities are vital in decision making practice, especially when no
a priori optimal solution exists and when more than one person is involved in
decision making. Explanation is practically impossible with analytical utility
functions because of difficulties with intuitive interpretation (understanding) of
them.

In the following sections we show how explanation facilities can be gained by
combining multi-attribute and expert system paradigms. The proposed ap-
proach is based on the explicit articulation of knowledge about a particular
decision making problem. Knowledge representation is specific and oriented to-
ward multi-attribute problems. It consists of tree-structured criteria and utility
functions which are represented by rules rather than formulae.

3 KNOWLEDGE REPRESENTATION

Knowledge representation for multi-attribute decision making is based on a tree
of criteria (also called semantic tree). Such a tree describes the structure of
a particular decision problem and serves as a ‘skeleton’ for utility functions
and evaluation of alternatives. With increasing depth of the tree, more specific
decision subproblems are considered. Let us define:

Criteria tree T is a pair (X , S) where:

X is a set of criteria {X1,X2, . . . ,Xn}; each criterion Xi ∈ X is further described
by its name, xi, and the domain Di of values it may hold;

S is a mapping X → 2X (2X is the power set of X ). For each criterion, the
mapping S defines a set of its immediate descendants (i.e. ‘sons’) in the tree.
It must satisfy the following requirements:

n⋃

i=1

S(Xi) = X − X1

and

Xk /∈ S∗(Xk), k = 1, 2, . . . , n.

S∗ denotes the transitive closure of S. S∗(X) therefore represents the set of all
descendants of X.

The above requirements ensure that T is a connected and directed graph without
cycles. In practice, it is usually further restricted to a tree, although this is
unnecessary from the formal point of view. According to the requirements, X1

is the root of T . The criteria X for which S(X) = ∅, are leaves of the tree and
are also called basic criteria. All other criteria are aggregate criteria.

The domains D1,D2, . . . ,Dn of the corresponding criteria X1,X2, . . . ,Xn are
assumed finite and discrete. They generally consist of words, not numbers.
For example, words such as ‘good’ or ‘high’ may be used in the domains. For
numerical quantities, intervals of values should be used as (discrete) domain
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elements. It is also recommended (but not required) to order the domains
by preference from ‘bad’ to ‘good’ values, for example bad, acceptable, good,
excellent or, for price, high, medium, low.

Utility functions are the second component of the decision knowledge base.
Their purpose is to define the influence of lower-level criteria on the higher-level
ones. For each aggregate criterion Xk ∈ X , the corresponding utility function

Fk : Di1 × Di2 × . . . × Dim → Dk

should be specified by the decision maker. Di1, . . . ,Dim are the domains of all
sons of Xk, i.e. {Xi1,Xi2, . . . ,Xim} = S(Xk).

It often happens that different decision groups with different interests are in-
volved in the decision making process. For this purpose, each group is allowed to
define its own utility functions. Therefore, as shown in figure 1, more than one
function may be defined for a particular criterion. However, the same criteria
tree must be agreed and used by all groups. Roughly speaking, the groups are
still required to “speak the same language” in order to be able to compare and
adjust their standpoints.

In the proposed approach, utility functions are specified by the decision maker
in the form of elementary decision rules. Let Xi1,Xi2, . . . ,Xim be the sons of
an aggregate criterion Xk. Then, the function

Xk = Fk(Xi1, . . . ,Xim)

is defined by a set of rules of the form

if Xi1 = vi1 and . . .and Xim = vim then Xk = v,

where vij and v denote single values taken from the corresponding criteria do-
mains.

The rules must not conflict with each other, i.e. only one rule with a given
conditional part may be defined. On the other hand, it is not necessary to define
all possible rules, i.e. the rules that cover all combinations of values in their
conditions. The rules that define a particular function are usually represented
in a tabular form (see, for example, table 1).

After the criteria tree and utility functions have been defined, evaluation of
alternatives may begin. The alternatives are first measured and described by
values of basic criteria. The utility functions are then applied in a bottom-up
manner in order to obtain aggregate values of all alternatives. These values,
especially the ones that have been assigned to the root of the criteria tree, are
finally used as a guideline for selection of the best alternative.

Figure 1 illustrates a decision knowledge base after alternatives have been eval-
uated. The criteria X1 to X6 are structured into a tree where X1 is the root
and X4 is the second (lower-level) aggregate criterion. The utility functions
F1 and F4 correspond to these aggregate criteria. If there are more decision
making groups, more than one function may be defined at each aggregate node.
Alternatives are described by values of basic criteria, i.e. X2, X3, X5 and X6.
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Figure 1: Criteria tree, utility functions and alternatives

CAR

{unacc, acc, good, very-good}

PRICE
{very-high, high,

med, low}

BUYING
{very-high, high,

med, low}

MAINT
{very-high, high,

med, low}

{low, med, high}

SAFETY

{2, 3, 4, 5-more}

DOORS PERSONS
{2, 4, more} {small, med, big}

LUG_BOOT

TECH

{poor, satisf,

good, very-good}

COMFORT {bad, acc,

good, very-good}

Figure 2: Criteria tree for the car selection problem
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COMFORT SAFETY TECH
bad low poor
bad med poor
bad high poor
acc low poor
acc high good
good low poor
good med good
good high v-good
v-good low poor
v-good med good

Table 1: Elementary decision rules for Technical characteristics

In figure 1, four alternatives are assumed. Evaluation results v4 and v1 for each
alternative have been obtained using functions F4 and F1, respectively. If there
are more decision making groups, the alternatives are evaluated separately for
each group, using the corresponding functions. For each group, different sets of
evaluation results, v4 and v1, are obtained in this case (which is not explicitly
shown in figure 1).

A simple (and even simplified for the sake of demonstration) example of the
criteria tree for car selection is shown in figure 2. According to this tree, the
quality of cars is measured by two main groups of criteria: price and techni-
cal characteristics. The price is determined by buying and maintenance price.
Technical characteristics are decomposed into safety and comfort, which further
depends on number of doors, size of a car (measured as number of persons that
fit in the car) and size of the luggage boot. In figure 2, the names and domains
of these criteria are presented. The domains are given in braces. An example
of rules that specify technical characteristics of a car according to its comfort
and safety is presented in table 1. Note that not all the possible combinations
of values of comfort and safety have been defined by the decision maker in this
case. Tables such as table 1 should be specified for all aggregate criteria, in this
case also for PRICE, COMFORT and CAR.

The approach presented in this section has been implemented within an expert
system shell named DECMAK (Bohanec et al. 1983, 1987, Rajkovič et al. 1986)
and thoroughly tested in about thirty practical decision situations (see sections
7 and 8). The main role of the shell is to actively support the decision maker
in knowledge acquisition and evaluation stages of the decision making process.
In the following sections, the implemented methods for knowledge acquisition,
verification and explanation are presented.

4 KNOWLEDGE ACQUISITION

According to the components of the decision knowledge base (figure 1), there
are two stages of the knowledge acquisition process:

• criteria tree design, and
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• acquisition of utility functions.

The DECMAK shell offers quite a limited support of the first stage. The reason
is because criteria trees tend to be extremely problem-dependent. Automatic
or semi-automatic construction of them requires a deep understanding of the
decision problem that we are not able to handle by the computer yet. This
problem is evident in all multi-attribute methods which start by criteria tree
design. It may also be compared to the field of machine learning (Michie and
Bratko 1986) where the domain description in terms of attributes must be first
provided by the expert. Automatic machine learning may take place only after
this has been done. By now, the highest level of computer support at this stage
is limited to an editor of criteria trees.

Acquisition of utility functions is much more actively supported by the system.
The functions are acquired by means of elementary decision rules (see section
3). An editor of tables (such as table 1) can be used for this purpose. However,
it can be a tedious process to fill-in large tables. In order to make this process
more effective, a question-answer dialogue has been designed. It consists of two
algorithms named ASK and ANSWER.

Before we describe these algorithms, let us define some notational conventions
that will be used in this and the following section. As each utility function is
assigned to a particular aggregate criterion, the discussion can be without the
loss of generality restricted to only one aggregate criterion, Y ∈ X . Let its sons
in the criteria tree be X1,X2, . . . ,Xk, and X1,X2, . . . ,Xk = S(Y ). We shall
also denote:

F - utility function Y = F (X1,X2, . . . ,Xk)
DY - domain of Y
Di - domain of Xi for i = 1, 2, . . . , k
y ∈ DY

xi ∈ Di

As domains DY and Di are discrete and somehow (usually preferentially) or-
dered by the decision maker during the time of their creation, we shall assume
them enumerated, therefore

y ∈ 1, 2, . . . ,m, m = |DY |, and
xi ∈ 1, 2, . . . ,mi, mi = |Di|, i = 1, 2, . . . , k.

A particular decision rule will be denoted by

(x1, x2, . . . , xk) ⇒ y

where the left hand side will be called a condition and y a value of the rule.

Let us now describe the ASK algorithm. Its purpose is to generate conditional
parts of rules and present them as questions to the decision maker who only
answers by giving a value. During practical experiments with ASK it turned
out that the order of posing the questions was important. Randomly stated
questions, i.e. subsequent questions with large differences in their conditions,
confused the user and slowed down the acquisition process. In order to stay as
long as possible in a given context and to allow the user to compare the current
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question with previously given answers, only small variations in subsequent
conditions are allowed. This may be also seen from the research in psychology,
where human ability to concentrate in the depths and unability to jump from
one subject to another were shown (Lindsay and Norman 1977).

Up to now, the best results were obtained by the following algorithm:

choose initial condition I;
while asking not stopped by the decision maker and

table of rules is not full do

generate question Q by small (i.e. first +1, then -1)
variations of all values of I;

if there is no such question Q then {make a large step}:
find condition C such that:

- in the table there is no rule of the form C ⇒ c
and

- C maximizes the Euclidean distance between C and the
condition of the closest already defined rule;

I := C; Q := C;
end if;
ask the question Q;
if Q was answered by y

then enter the rule Q ⇒ y into the table
else the user need not answer the question;

end if;
end while.

The initial condition I is chosen by

if the table of rules is empty
then I := (1, 1, . . . , 1)
else I := R, where R ⇒ x is the last rule entered into the table;

end if.

From the algorithm it may be seen that the decision maker need not answer all
the questions (some of them may be irrelevant in a given situation). He or she
may stop the acquisition process at any time and/or select the new context of
questions by explicitly entering a complete rule into the table. If the change
of the context must be made automatically, the largest possible step is done in
order to explore all parts of the decision space.

In order to reduce errors during acquisition of rules, this process is continuously
monitored by a monotonicity checker. Criteria domains are usually ordered
by preference, and thus the majority of utility functions (in practice, about
90%) increase or remain stable when their arguments increase. When a newly
entered rule violates monotonicity, the user is warned, but no specific action is
undertaken to prevent entering it into the table.

ANSWER is the second important algorithm used in rule acquisition. It is in a
sense ‘symmetric’ to ASK. Given a conditional part of a rule and other already
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specified rules, it calculates a value of the rule. Afterwards, this rule may but
need not be entered into the table. The calculated value may be overridden
by the user as well. This algorithm is important in verifying the knowledge
base. Once appropriate behaviour has been observed by means of ANSWER,
rule acquisition process may be stopped and the corresponding table of rules
need not be completely filled-in. ANSWER may be invoked automatically also
in the stage of evaluation of alternatives (section 6).

Several different methods were practically tested within the ANSWER calcula-
tion procedure. They mainly based on regression (linear, quadratic, cubic) or
on machine learning algorithms that build decision trees, namely ID3 (Quin-
lan 1979) and CART (Breiman et al. 1984). It was estimated (on a quite
subjective basis, we must admit) that least ‘obvious mistakes’ were made by a
simple method based on linear regression. This method considers rules from a
particular table as points in a multidimensional space and approximates them
by a (hyper)plane. In this approximation, only rules that nearly surround (in
Euclidean terms) the rule for which the value is to be determined, are taken
into account. The algorithm to compute the unknown value y of rule R ⇒ y is
therefore:

S := ∅;
repeat

add to S all P ∈ T − S such that |R − P | = minQ∈T−S |R − Q|;
compute y by linear regression using rules from S;

until y computed or S = T .

In this algorithm, T denotes the set of all defined rules (i.e. the table). S is the
set of rules that nearly surround rule R. |R−P | denotes the Euclidean distance
between the rules R and P .

The disadvantage of using regression in the above algorithm is its ‘black-box’
behaviour which can not be easily explained to the decision maker. However,
after the computation has been done, the set S contains the selected rules that
were used in the computation. As S is usually much smaller than the complete
table T , the rules from S may be listed and relatively easily reviewed by the
decision maker.

5 KNOWLEDGE EXPLANATION

After utility functions have been acquired, they can be immediately used for
evaluation and analysis of alternatives (section 6). However, it turned out to be
a good practice to review and justify the knowledge base before proceeding to
the next stage. This is important not only to find erroneous rules, but also to
further rethink the whole knowledge base in order not to overlook some impor-
tant aspects of the decision making problem and to ensure that the knowledge
base really expresses the decision maker’s preference knowledge. The decision
maker must be able to understand the whole knowledge base and to explain
it to himself, to other members of the decision making group(s) and even to

10



SAFETY

low: TECH = poor

med:

COMFORT

bad: TECH = poor

acc: ?

>=good: TECH = good

high:

COMFORT

bad: TECH = poor

acc: TECH = good

good: TECH = v-good

v-good: ?

Table 2: Decision tree for Technical characteristics

people not directly involved in the decision making process. Unfortunately, this
important stage is almost completely omitted from ‘traditional’ multi-attribute
techniques.

In DECMAK, several algorithms are used for the purpose of knowledge expla-
nation. Their main role is to translate elementary decision rules into different
representations which show the same knowledge from different viewpoints and
at different levels of detail.

Elementary rules themselves are the most detailed representation of the knowl-
edge. However, large tables of these simple rules tend to become difficult to
handle, interpret and verify. In DECMAK, they are made more compact and/or
easily understandable by the following three groups of algorithms:

• inductive learning algorithms,

• graphics, and

• linear regression analysis.

Inductive learning algorithms (Michie and Bratko 1986) treat elementary deci-
sion rules as examples of particular alternatives or their parts with the known
values. On the basis of these examples, they produce more compact and/or
generalized description of the underlying knowledge. Usually, decision trees or
more complex rules are generated (here, the term decision tree refers to decision
trees as they are considered in inductive learning (Quinlan 1979), not in decision
analysis (French 1986)).

In order to make a decision tree out of elementary rules, Quinlan’s ID3 algo-
rithm (Quinlan 1979) is used in DECMAK. Table 2 shows an example of a
decision tree that was generated by ID3 using elementary rules (examples) from
table 1. It may be interpreted as follows: If safety of a car is low, then technical
characteristics are poor. If safety is medium, comfort of a car must be further
considered. If it is bad, technical characteristics are poor as well. If comfort
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is good or better, technical characteristics are good. However, if comfort is
acceptable, there is a question mark in the tree which indicates that such infor-
mation has not been specified by the decision maker and that ID3 was unable
to generalize the knowledge at this point. Such information may be valuable to
discover loosely defined parts of the decision space, but may also be avoided by
combining ID3 with the regression method described in section 4.

The advantage of using decision trees is their ability to structure the decision
space. Points (rules) in decision space that are close to each other are also
closely structured in the tree. They can be easily compared.

However, it turned out in our practical experiments that some users disliked
decision trees, mainly because they were so different from the original tables.
This problem can be quite easily overridden by translating a decision tree into a
table. Each path from the root of the tree to one of its leaves may be represented
by a row in this table. Unfortunately, such tables tend to be non-optimal, i.e.
there exist tables with less rows. For this reason, another method for gener-
ating aggregate tables is applied in DECMAK. It is actually an adapted (and
quite simple) version of AQ inductive learning algorithms (Michalski and Lar-
son 1983). This method directly translates elementary decision rules into more
aggregate ones. The only difference between elementary and aggregate rules is
that within the latter, appearance of intervals of values in their conditions is
allowed, i.e.

if X1 ∈ I1 and . . .and Xk ∈ Ik then Y = v,

where Ii denotes an interval of values of the corresponding domain Di.

Aggregate rules are iteratively generated for each y ∈ DY . The algorithm tries
to find the lower number of aggregate rules that replace all elementary rules with
value y. In the case that more equivalent solutions emerge, a heuristic criterion
of ‘understandability’ is applied to choose one. Aggregate rules are considered
‘understandable’ if intervals Ii in their conditions equal to the corresponding
criteria domains or cover at least one marginal (very good or very bad) value.
Small internal intervals are not preferred.

The algorithm is as follows:

for each y ∈ DY do

while there exist uncovered elementary rules P ⇒ y do

choose uncovered elementary rule P ⇒ y;
generate all aggregate rules that

- cover the chosen rule, and

- cover some other elementary rules with value y, and

- do not include undefined parts of the decision space;
choose such aggregate rule which maximizes the number of

covered elementary rules;
if there are more such aggregate rules then

among these choose the most ‘understandable’ one;
write the chosen aggregate rule;

end while

end for.
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COMFORT SAFETY TECH
- low poor
bad - poor
acc high good
>=good med good
good high v-good

Table 3: Aggregate rules for Technical characteristics

TECH

low

med

high

bad

acc

good

v-good

poor

satisf

good

v-good

COMFORTSAFETY

Figure 3: Graphic representation of rules from table 1

Aggregate rules which were generated out of elementary rules in table 1, are
shown in table 3. Note that ‘-’ indicates the whole range of values, i.e. repre-
sents any value of a particular criterion. ‘>=good’ means ‘good or better’ or,
equivalently, ‘at least good’.

Let us briefly mention the remaining two tools used in knowledge explanation,
graphic display of utility functions and regression analysis. The main goal of
graphics is to present the overall shape of a particular function. For example,
figure 3 presents the same function as given in tables 1 to 3. Note circles around
two points on the surface. They mark values which were not explicitly given by
the decision maker but estimated by the ANSWER algorithm (section 4).

Regression analysis is applied in order to get a high-level description of utility
functions, i.e. to represent them without any details. All points of a particular
function are approximated by a (hyper)plane. Gradient of this plane, normalized
to the unit space, is then transformed into weights (relative importances) of
particular criteria. Weights are usually expressed as percentages. For example,
the weights of criteria COMFORT and SAFETY are, according to the function
in figure 3, 45.9% and 54.1%, respectively.
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6 EVALUATION AND ANALYSIS OF ALTER-

NATIVES

In this stage of the decision making process, the knowledge base is actually used
to solve the decision problem. Alternatives should be measured and described
by values of basic criteria. The alternatives are then evaluated according to the
defined utility functions. Generally, the alternative that got the most desirable
evaluation results, should be considered the best.

In DECMAK, the evaluation process proceeds from bottom to the top of the
criteria tree. Evaluation of a particular function starts with searching for the
appropriate rule. If one is not found, the ANSWER algorithm is applied to
compute the function value.

Evaluation of alternatives is the main, but not the only task of a decision making
system that should be performed at this stage. Evaluation results should be at
least justified and explained. In DECMAK, as it is common in expert systems,
these activities are emphasized and actively supported. DECMAK can

• explain the evaluation process in terms of rules that were triggered,

• explain each alternative by its advantages and disadvantages,

• compare two alternatives by selecting only those criteria which signifi-
cantly influence the difference, and

• perform ‘what-if’ and sensitivity analysis.

DECMAK can also deal with incomplete and uncertain data about alternatives
by means of probabilistic and fuzzy distributions of values (Bohanec et al. 1983).

It is beyond the scope of this paper to further describe numerous techniques
which are implemented in DECMAK for these purposes. They are treated in
more detail in (Rajkovič et al. 1986, Bohanec and Rajkovič 1987).

7 APPLICATIONS

Up to now, DECMAK has been applied in about 30 practical decision making
situations. The problems varied from simple, personal decisions (like job, car or
photo camera selection) to complex group decision problems usually connected
with large investments:

1. evaluation of computer systems for an enterprise (5 applications);

2. selection of computer hardware and/or software for schools (4 applica-
tions);

3. microcomputer selection;

4. evaluation of production control software;
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PROB- BASIC AGGREGATE ALTER-
LEM CRITERIA CRITERIA NATIVES
1.a 20 9 6

b 67 45 2
c 17 9 3
d 35 24 8

2.a 11 6 6
b 12 9 10
c 36 19 24

5. 74 29 3
6. 22 12 >20
7. 8 5 >2000
9. 16 8 164

10. 34 19 1
11. 12 9 55

Table 4: Illustration of complexity of some practical decision problems

5. data base management system selection (2 applications);

6. trading partner selection;

7. evaluation of applications for nursery schools;

8. matching people to jobs;

9. expert team selection;

10. evaluation of a project feasibility;

11. performance evaluation of enterprises.

As it is evident from this list, DECMAK has been intensively used in decisions
connected with computers. The main reason for this is the background of the
authors of this system which is in computer science. It was convenient for them
to play a dual role in decision making processes, being decision analysts and
computer consultants at the same time. However, applications numbered 6 to
11 clearly show that usefulness of this approach is not limited to computer-
oriented problems.

The complexity of a particular decision problem is usually expressed by the
number of criteria and the number of alternatives. These data for some of the
above problems are summarized in table 4.

8 DISCUSSION

It is difficult to objectively measure the quality of a given method or approach in
decision making. After ‘the best’ alternative has been chosen and implemented
in practice, it becomes extremely difficult to compare this alternative with al-
ternatives that were rejected by the decision. These alternatives are ‘dead’ and
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there is no information on how they would have performed in practice under the
same circumstances. It is therefore difficult to determine whether the decision
was really ‘the right’ one or not.

Let us therefore discuss some ‘indirect’ impacts of the proposed decision making
approach to the quality of decision making. As it is common to all decision
making techniques, it helps in organizing in systematizing the decision maker(s)
knowledge about a particular decision making problem. Here, the main goal
is not to overlook criteria that significantly influence the decision and to apply
the constructed model consistently upon all alternatives. Effective use of the
method and its ability to help understand, justify and explain the decision are
also important.

Time that was required to make the decisions mentioned in section 7 varied
quite a lot according to the complexity of the problem, familiarity of the deci-
sion makers with the problem (i.e. amount of available knowledge), availability
of data about alternatives, motivation of the decision makers, documentation
requirements, etc. For simple personal problems, at most few hours were spent.
For more complex problems, this varied from 2 (applications 1b and 10) to 20
(application 1d) days. Most commonly, the decision making process took 3 to
6 days with the following time schedule:

• 1 to 2 days: criteria tree design,

• 1 to 2 days: definition of utility functions,

• 1 to 2 days: evaluation and analysis of alternatives.

This is more than two days that are usual for decision making conferences where
‘traditional’ decision analysis is used (Phillips 1986). There are two reasons for
this. First, more time is needed to define decision rules than, for example, just
fill-in weights into a predefined formula. But in return we gain a flexible support
in justifying and explaining the knowledge itself and in explaining the decision.
However, exploring these facilities in detail also increases the overall decision
making time.

When analyzing separate stages of the decision making process, the first one,
design of the criteria tree, appears the most critical. It directly influences the
relevance and success of the final decision. Selecting relevant criteria and struc-
turing them into tree is a difficult creative task which requires a deep under-
standing of the problem at hand. It is still more art than science. Errors in tree
design may but need not be uncovered in the subsequent stages of the process.
Further research is needed in order to develop tools that would actively and on
a higher semantic level support this design. Some solutions might be acquired
by intelligent, problem-oriented interfaces and/or predefined knowledge bases
to be only customized for a particular decision problem.

The acquisition of utility functions with the support of DECMAK tools is much
less problematic. Elementary decision rules, although simple, have been found
very flexible and appropriate for acquisition of preference knowledge. This may
be justified by findings in the field of machine learning (Michie and Bratko 1986).
Each elementary rule may be also viewed as an example of a (real or fictional)
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alternative. By defining the value of a rule, the decision maker actually evaluates
this alternative. However, such evaluation is not done on the whole range of
criteria, but only on those which are determined by the position of the utility
function within the criteria tree. It has been shown in machine learning that
this way of knowledge acquisition resolves the Feigenbaum’s bottleneck problem
of knowledge articulation (Feigenbaum 1981, Michie and Bratko 1986).

Knowledge acquisition by examples may still require significant amount of time.
Tools like ASK (section 4) become extremely important in this regard. More-
over, we believe that without such a tool the proposed approach would not have
been feasible. In practice, the use of ASK helped us significantly reduce the time
required to define a utility function (i.e. table such as table 1 or larger). Now,
this can be done in the range of minutes, typically 1 to 20 depending on the
complexity of the domain. However, in complex criteria trees, utility functions
are numerous and the whole process can still last a day or two. It also appeared
that work with ASK was quite demanding for humans. It was difficult for them
to concentrate on questions longer than, say, two hours at once.

Yet another limitation of human information processing emerged at this stage.
If the number of functions’ arguments (i.e. descendants in the tree) exceeded
four, it became very difficult to define appropriate rules. Knowledge acquisition
time increased and errors were introduced. This should be taken into account
during the design of criteria trees in order not to group more than four criteria
together.

ASK’s counterpart, ANSWER, is not so vital in knowledge acquisition. Its
main purpose is to make use of rule tables that are only partially filled-in. In
DECMAK, it is based on regression which gives relatively good results, but offers
quite limited possibilities for explanation. Usually, 40% to 60% of all possible
rules in a table should be defined in order to obtain the desired answers. Further
research is suggested at this point in order to get a method that would work
correctly with less rules and that its actions would be more easily explained.

The group of tools for knowledge explanation (section 5) is again very important
in practice. In (but not limited to) decision making, knowledge must be first very
well understood by the decision maker himself. On this basis, human learning
and knowledge refinement cycles may take place (Michie and Bratko 1986). The
knowledge must also be communicated among the people directly or indirectly
involved in creation and/or use of the knowledge base. For these purposes,
different viewpoints (representations) of the same knowledge at different levels
of detail are required.

DECMAK offers quite a wide range of knowledge explanation tools. According
to the opinion of users of the system, the most useful of them are algorithms
that generate aggregate rules (table 3) and graphics (figure 3).

It is again difficult to measure the impact of knowledge explanation tools to the
quality of final decisions. On the basis of numerous refinements and improve-
ments of the knowledge bases that resulted directly from different explanation
views and that would otherwise had been overlooked, we strongly believe that
these tools make decisions better. At least, they are better justified and ex-
plained.
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9 CONCLUSION

The decision making approach presented in this paper combines two technolo-
gies, multi-attribute decision methods and expert systems. The result of the
decision making process is structured and explicitly articulated knowledge base,
which can be argued, verified and documented. Knowledge base structure is
specially adapted for multi-attribute decision problems. It consists of tree-
structured criteria and utility functions, represented by elementary decision
rules. This relatively simple structure has been found sufficiently general and
flexible in about thirty practical decision situations.

The approach is supported by an expert system shell named DECMAK. It
consists of tools which actively support knowledge acquisition and its use for
evaluation of alternatives. The main emphasis is on explanation of evaluation
results and explanation of the knowledge itself. For the latter, tools that trans-
late the knowledge base into different representations at different level of detail
are implemented.

The proposed approach must not be considered a replacement of all ‘traditional’
multi-attribute methods neither of expert systems in decision making. Accord-
ing to our practical experience, it is best suited for complex decision situations,
where

• large number of criteria is involved (say, more than 15),

• judgmental (qualitative) decision making is necessary,

• knowledge explanation and explanation of the results are needed (e.g. in
group decision making),

• there are at least 2 to 3 days available for the decision, and

• there is an IBM PC/XT/AT or VAX computer available (without com-
puter tools like ASK or knowledge explanation algorithms, this approach
is practically unfeasible).

For example, expert systems with more specific knowledge-base structure and
inference engine might be preferred in complex and repetitive decision making
problems. On the other hand, ‘traditional’ multi-attribute techniques are prob-
ably better for personal decision making, for problems with prevailing numeric
criteria and well defined objectives, and for decisions which are to be made
extremely quickly.
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