Methods for Developing Hierarchical Models
Research project, 1997-99, financed by the
Ministry of Science and Technology of the
Republic of Slovenia under grant 3411-97-22-9076.
Project Results
Theory and methodology
 -  Zupan, B., Bohanec, M., Bratko, I., Demšar, J.:
      
      Machine learning by function decomposition,
      in Proceedings ICML-97 (ed. Fisher, D.H.),
      pp. 421-429,
      San Francisco: Morgan Kaufman Publishers, 1997.
 
 -  Zupan, B., Bohanec, M., Demšar, J., Bratko, I.:
      Learning by discovering concept hierarchies,
      Artificial Intelligence 109, pp. 211-242, 1999.
 
 -  Zupan, B., Bratko, I., Bohanec, M., Dem{ar, J.:
      Induction of concept hierarchies from noisy data,
      in Proceedings of the Seventh International Conference on Machine
      Learning ICML-2000 (ed. Langley, P.),
      pp. 1199-1206,
      San Francisco: Morgan Kaufmann Publishers, 2000.
 
Partition selection measures
Handling of noise and uncertainty
 -  Zupan, B,:
      Machine learning based on function decomposition,
      Ph.D. Thesis, University of Ljubljana, 1997.
 
Decomposition of real-valued functions
 -  Demšar, J., Zupan, B., Bohanec, M., Bratko, I.:
      
      Constructing intermediate concepts by decomposition of real functions,
      in Machine Learning: ECML-97 (eds. van Someren, M., Widmer, G),
      pp. 93-107,
      Berlin: Springer-Verlag, 1997.
 
Applicability of function decomposition
 -  For Decision Support:
 
 -  Bohanec, M., Zupan, B., Bratko, I., Cestnik, B.:
      
      A function-decomposition method for development of hierarchical
      multi-attribute decision models,
      in Proceedings of the Fourth Conference of the International
      Society for Decision Support Systems ISDSS-97,
      pp. 503-514,
      Lausanne, 1997.
 
 -  For Knowledge Discovery in Databases (KDD):
 
 -  Zupan, B., Bohanec, M., Bratko, I., Cestnik B.:
      
      A dataset decomposition approach to data mining and machine discovery,
      in Proc. of the Third International Conference on Knowledge
      Discovery and Data Mining (KDD-97) (eds. Heckerman, D., Mannila, H.,
      Pregibon, D., Uthurusamy, R.),
      pp. 299-303. AAAI Press, 1997.
 
 -  For Feature Transformation:
 
 -  Zupan, B., Bohanec, M., Demšar, J., Bratko I.:
      Feature transformation by function decomposition,
      IEEE Intelligent Systems 13(2), pp. 38-43, 1998.
      (abstract).
 
-  Zupan, B., Bohanec, M., Demšar, J., Bratko I.:
      Feature transformation by function decomposition,
      in Feature extraction, construction and selection: A data
      mining perspective (eds. Liu, H., Motoda, H.),
      pp. 325-340, Kluwer Academic Publishers, 1998.
 
  -  Applications in Medicine:
 
 -  Zupan, B., Halter, J.A., Bohanec, M.:
      Concept Discovery by Decision Table Decomposition and its
      Application in Neurophysiology,
      in Intelligent data analysis in medicine and pharmacology
      (eds. Lavrač, N., Keravnou, E., Zupan, B.),
      pp. 261-277, Kluwer, 1997.
 
-  Bohanec, M., Zupan, B., Rajkovič, V:
      Hierarhični odločitveni modeli in njihova uporaba v zdravstvu,
      Zbornik CADAM-97: Računalniška analiza medicinskih podatkov
      (eds. I. Kononenko, T. Urbančič),
      Institut Jožef Stefan, 1-17, 1997.
 
  -  Applications in Socioeconomic Research:
 
 -  Krisper, M., Zupan, B.:
      Synthesis of hierarchical decision support models from socioeconomic data,
      Zbornik konference Informacijska družba
      (eds. Bavec, C., Gams. M.), Institut Jožef Stefan, 60-63, 1998.
 
Methods and tools for hierarchical decision models
 -  Bohanec, M., Cestnik, B., Rajkovič, V.:
      Evaluation models for housing loan allocation in the context of floats,
      in Context sensitive decision support systems
      (eds. Berkeley, D., Widmeyer, G.R., Brezillon, P., Rajkovič, V.),
      Chapman & Hall, pp. 174-189, 1998.
 
 -  Grohar, B., Bohanec, M., Rajkovič, V.:
      DexW: Računalniški program za delo s kvalitativnimi
      večparametrskimi odločitvenimi modeli,
      Zbornik sedme Elektrotehniške in računalni{ke konference ERK'98
      (ed. Zajc, B.), Portorož, 107-110, 1998.
 
The machine learning method based on function decomposition was
implemented in the C language as a system called HINT (Hierarchy
INduction Tool). This research prototype system runs on several UNIX
platforms, including HP-UX, SGI Iris, and SunOS. The definition of
domain names and examples, and the guidance of the decomposition is
managed through a script language.
After the termination of this project, HINT has been incorporated into
Orange,
a public domain data mining software developed at the
University of Ljubljana,
Faculty of Computer and Information Science.